
DIFFIE HELLMAN KEY ExCHANoTE

FxOnple
XA 6 XB 8

ICheo Sen Re pkme Lm bo =

cho o Se and etsa paimi ti ve

root 9 =2

Cheo Se any kandom Vaue

or UAcs A Ond Oss B

XA = 6 XB 8B

XA

A raed i 2 med

mod t 66 med ti

Ye 3

YA vonned to se

t Ye ranseuecd

3h aned &aet Ke K DAos A

XA

K-Y) med q

K 3 mod I

19 mod U

3

Shaed &auat Ka K o

Ya) mod 9

8e d 11

304bHa1 ed =

To unol 430 46121 OLec I

A3046121/ = 3913 33 8

391333&X1 = 430 4618

AsO461a1-430 46T18 = 13

RSA Alaorithm

Fxample. 2 M 8., e 17

po Se 2 ptir h maOIA

P

Px

3 n) (P -1) (q-)

-(7-1) (1-)
6xi6

chooSa e Such hat i) 1ce 4Q(n)

tde, bo) »

c T, bo) » I.

6 d d
1+ K Q(n)

d + PLn)

e

+6
3,5 38

Subsitte K= o b

K d. 1+ K. PUn) O.bo

e

d I460
3.58

K-2
d +2xbo 12

3
+3 bo 8 1o.b

d + 4 *bo AO 14. Ka4

301 -1.1

gol -53 whole ne.

d 53

uble Key Ku - e, n

Ku , 11}

ivate keKR d,n

KR n 3, 11

npttus

C M nod) e

C =8 mod T

-51

Hou ind med t1.

mod 71

med 11 =
tDo8, 8. 8, 8.8

11

=8 mod t1 x 8 mod tt x

8
A

& ro d t1 x 8 mo od x

8

med 17
mod 1

8

Ao5oo0 mod 1t
11

3 mod 11 =67

Noa 8 A od i = Aoqb mo d tt

= 16.

Aob mo d 11 ?

4 q6/11 = 53

2) 53 x11: 4081

3 A0b -408l=5

Deuy pon
M C rod)

=57 od TT.
5

5 S 5

ETmed dfx 5 med t1 x 51 mod x

5
med mo d

3
x 6 mood t1) mo d

5me d 11 otbq205Ji Mod 11|

A 3

Od 1t = 8 51 3 mocd 17

M (A3 r43 x 43 x43 x43 x43x43 x43X43x43 =

x8) mecl t

+3. 43. a) mod t1

mod t1 x 43 mool 11 8 mool 11)x

meolt1

|43 rac ti = 4too 8 443 macdt7

A3

43 X+3 x8) mecd T

= 4Ta2 mod 11

M

UNIT III

PUBLIC KEY CRYPTOGRAPHY

MATHEMATICS OF ASYMMETRIC KEY CRYPTOGRAPHY: Primes – Primality

Testing – Factorization – Euler‘s totient function, Fermat‘s and Euler‘s Theorem – Chinese

Remainder Theorem – Exponentiation and logarithm – ASYMMETRIC KEY CIPHERS:

RSA cryptosystem – Key distribution – Key management – Diffie Hellman key exchange –

ElGamal cryptosystem – Elliptic curve arithmetic-Elliptic curve cryptography.

MATHEMATICS OF ASYMMETRIC KEY CRYPTOGRAPHY

5.1. PRIMES

 An integer p> 1 is a prime number if and only if its only divisors are ±1 and ± p. Prime

numbers play a critical role in number theory.. In particular, note the number of primes

in each range of 100 numbers.

Any integer a> 1 can be factored in a unique way as

 wherep1< p2< …..<pt are prime numbers and where each ai is a positive integer. This

is known as the fundamental theorem of arithmetic; a proof can be found in any text on

number theory.

 It is useful for what follows to express this another way. If P is the set of all prime

numbers, then any positive integer a can be written uniquely in the following form:

 The right-hand side is the product over all possible prime numbers p; for any particular

value of a, most of the exponents ap will be 0.

 The value of any given positive integer can be specified by simply listing all the nonzero

exponents in the foregoing formulation.

 Multiplication of two numbers is equivalent to adding the corresponding exponents.

Given

 Define k = ab. We know that the integer k can be expressed as the product of powers

of primes: .

It follows that kp = ap + bp for all

 What does it mean, in terms of the prime factors of a andb, to say that a divides b? Any

integer of the form pn can be divided only by an integer that is of a lesser or equal power

of the same prime number, pjwith j ≤ n. Thus, we can say the following.

Given

It is easy to determine the greatest common divisor of two positive integers if we express each

integer as the product of primes.

The following relationship always holds:

Determining the prime factors of a large number is no easy task, so the preceding relationship

does not directly lead to a practical method of calculating the greatest common divisor.

5.2. PRIMALITY TESTING

Contents

 Testing for primality

 Miller-Rabin Algorithm

 Two Properties of Prime Numbers

 Details of the Algorithm

 A Deterministic Primality Algorithm

 Distribution of Primes

Testing for primality:

Miller-Rabin Algorithm

 The algorithm due to Miller and Rabin [MILL75, RABI80] is typically used to test a

large number for primality. Before explaining the algorithm, we need some

background.

 First, any positive odd integer n ≥ 3 can be expressed as

Two Properties of Prime Numbers

The first property is stated as follows:
o If p is prime and a is a positive integer less than p, then a2 mod p = 1 if and

only if either a mod p = 1 or a mod p = −1 mod p = p −1. By the rules of

modular arithmetic (a mod p) (a mod p) = a2 mod p.

The second property is stated as follows:
1. aq is congruent to 1 modulo p. That is, aq mod p = 1, or equivalently, aq ≡

1(mod p).

2. One of the numbers aq, a2qa2k-lq is congruent to −1 modulo p.

Details of the Algorithm

 The procedure TEST takes a candidate integer n as input and returns the result

composite if n is definitely not a prime, and the result inconclusive if n may or may not

be a prime.

A Deterministic Primality Algorithm

 All of the algorithms in use, including the most popular (Miller-Rabin), produced a

probabilistic result.

 AKS developed a relatively simple deterministic algorithm that efficiently determines

whether a given large number is a prime. The algorithm, known as the AKS algorithm,

does not appear to be as efficient as the Miller- Rabin algorithm.

Distribution of Primes

 A result from number theory, known as the prime number theorem, states that the

primes near n are spaced on the average one every ln(n) integers.

 Thus, on average, one would have to test on the order of ln(n) integers before a prime

is found. Because all even integers can be immediately rejected, the correct figure is

0.5 ln(n).

5.3. FACTORIZATION

5.4. EULER‘S TOTIENT FUNCTION

 Euler’s totient function Φ(n) defined as the number of positive integers less than n and

Relatively prime to n. by conversion Φ(1)=1.

5.5. FERMAT‘S AND EULER‘S THEOREM

Contents

 Fermat’s Theorem

 Proof:

 Euler’s Totient Function

 Euler’s Theorem

 Proof:

Two theorems that play important roles in public-key cryptography are Fermat’s theorem and

Euler’s theorem.

Fermat’s Theorem

 Fermat’s theorem states the following: If p is prime and a is a positive integer not

divisible by p, then

Proof:

 Consider the set of positive integers less than p= {1, 2,…, p - 1} and multiply each

element by ” a modulo p”, to get the set X = {a mod p, 2a mod p, …, (p - 1)a mod p}.

 None of the elements of X is equal to zero because p does not divide a.

 Multiplying the numbers in both sets (p and X) and taking the result mod p yields

 We can cancel the (p - 1)! term because it is relatively prime to p .

 Hence proved.

 Example

 An alternative form of Fermat’s theorem is also useful: If p is prime and a is a positive

integer, then

Euler’s Theorem

Euler’s theorem states that for every a and n that are relatively prime:

Proof:

 Equation (8.4) is true if n is prime, because in that case, f(n) = (n - 1) and Fermat’s

theorem holds.

 However, it also holds for any integer n. Recall that f(n) is the number of positive

integers less than n that are relatively prime to n. Consider the set of such integers,

labeled as

 That is, each element xi of R is a unique positive integer less than n with gcd(xi, n) =

1.Now multiply each element by a, modulo n:

The set S is a permutation of R, by the following line of reasoning:

1. Because a is relatively prime to n and xi is relatively prime to n, axi must also be

relatively prime to n. Thus, all the members of S are integers that are less than n and

that are relatively primeto n.

2. There are no duplicates in S. Refer to Equation (4.5). If axi mod n = axj mod n, then

xi = xj.

Therefore,

 which completes the proof.

5.5. CHINESE REMAINDER THEOREM

Let m1,…,mk be integers that are pairwise relatively prime integers. Define M to be the

product of all the mi′s. Let a1,…. ,ak be integers. Then the set of congruences.

x ≡ a1(mod m1)

x ≡ a2(mod m2)

 .

 .

 .

x ≡ak(mod mk)

has a unique solution modulo M.

Proof:

 Put M= m1, m2,……..mr and for each k= 1,2,……r.

Let ,

 𝑀𝑘 =
𝑀

𝑚𝑘

 Then gcd (MK , mk) = 1 for all k.

 Let, yk be an inverse of MK modulo mk for each k.

 Then by definition of inverse we have

 MK yk = 1(mod mk)

 Let , x = a1 M1 y1 + a2 M2 y2 + …….+ ak Mk yk.

 Then x is a simultaneous solution to all of the congruence.

 Since the modulo m1, m2,……..mr are pairwise relatively prime, any two simultaneous

solution to the system must be congruent modulo M.

 Thus , the solution is a unique congruence class modulo M, and the value of x

computed above is in that class.

5.6. EXPONENTIATION AND LOGARITHM

Contents

 Introduction

 The Powers of an Integer, Modulo n

 Logarithms for Modular Arithmetic

 Calculation of Discrete Logarithms

Introduction

 Discrete logarithms are fundamental to a number of public-key algorithms, including

Diffie-Hellman key exchange and the digital signature algorithm (DSA).

The Powers of an Integer, Modulo n

 Recall from Euler’s theorem [Equation (8.4)] that, for every a and n that are relatively

prime,

 whereφ(n), Euler’s totient function, is the number of positive integers less than n and

relatively prime to n. Now consider the more general expression:

 If a and n are relatively prime, then there is at least one integer m that satisfies Equation

(8.10), namely, M =φ(n). The least positive exponent m for which Equation (8.10) holds

is referred to in several ways:

• The order of a (mod n)

• The exponent to which a belongs (mod n)

• The length of the period generated by a

 Table 8.3 shows all the powers of a, modulo 19 for all positive a < 19. The length of

the sequence for each base value is indicated by shading. Note the following:

1. All sequences end in 1. This is consistent with the reasoning of the preceding few

paragraphs.

2. The length of a sequence divides φ(19) = 18. That is, an integral number of sequences

occur in each row of the table.

3. Some of the sequences are of length 18. In this case, it is said that the base integer a

generates (via powers) the set of nonzero integers modulo 19. Each such integer is

called a primitive root of the modulus 19.

Logarithms for Modular Arithmetic:

 With ordinary positive real numbers, the logarithm function is the inverse of

exponentiation.An analogous function exists for modular arithmetic.

 The logarithm of a number is defined to be the power to which some positive base

(except 1) must be raised in order to equal the number. That is, for base x and for a

value y,

The properties of logarithms include

 Consider a primitive root a for some prime number p (the argument can be developed

for nonprimes as well). Then we know that the powers of a from 1 through (p - 1)

produce each integer from 1 through (p - 1) exactly once. We also know that any integer

b satisfies

 By the definition of modular arithmetic. It follows that for any integer b and a primitive

root a of prime number p, we can find a unique exponent i such that

 This exponent i is referred to as the discrete logarithm of the number b for the base a

(mod p).We denote this value as dloga,p(b).

Note the following:

Calculation of Discrete Logarithms

Consider the equation

 Given g, x, and p, it is a straightforward matter to calculate y. At the worst, we must

perform x repeated multiplications, and algorithms exist for achieving greater

efficiency.

ASYMMETRIC KEY CIPHERS
5.7. RSA CRYPTOSYSTEM

Contents

 introduction

 Description of the Algorithm

 Computational Aspects

 The Security of RSA

Introduction:

 It was developed by Rivest, Shamir and Adleman. This algorithm makes use of

an expression with exponentials.

 Plaintext is encrypted in blocks, with each block having a binary value less than some

number n.

 The RSA scheme is a cipher in which the plaintext and cipher text are integers between 0

and n - 1 for some n. A typical size for n is 1024 bits, or 309 decimal digits. That is, n is

less than 21024.

Description of the Algorithm

 That is, the block size must be less than or equal to log2 (n); in practice, the block size

is k-bits, where 2
k

< n < 2
k+1

.Encryption and decryption are of the following form,

for some Plaintext block M and Cipher text block C:

C = M
e

mod n

 M = C
d

 mod n

 Both the sender and receiver know the value of n. the sender knows the value of e

and only the receiver knows the value of d. thus, this is a public key encryption

algorithm with a public key of KU = {e, n} and a private key of KR = {d, n}.

 Let us focus on the first requirement. We need to find the relationship of the form:

M
ed

 = M mod n

 A corollary to Euler’s theorem fits the bill: Given two prime numbers p and q Integers,

n and m, such that n=pq and 0<m<n, and arbitrary integer k, the following

relationship holds

mk Ф(n) +1
= m

k(p-1)(q-1) +1
= m mod n

 where Ф(n) – Euler totient function, which is the number of positive integers less than

n and relatively prime to n.we can achieve the desired relationship, if

d = e
-1

mod Ф(n)

 That is, e and d are multiplicative inverses mod Ф(n). According to the rule of modular

arithmetic, this is true only if d (and therefore e) is relatively prime to Ф(n).

Equivalently, gcd (Ф(n), d) = 1.

 The steps involved in RSA algorithm for generating the key are

 Select two prime numbers, p = 17 and q = 11.

 Calculate n = p*q = 17*11 = 187

 Calculate Ф (n) = (p-1) (q-1) = 16*10 = 160.

 Select e such that e is relatively prime to Ф (n) = 160 and less than Ф(n);

 we choose e =7.

 Determine d such that ed ≡ 1 mod Ф (n) and d<160. The correct value is d =

23, because 23*7 = 161 = 1 mod 160.

RSA algorithm is summarized below.

5.8. KEY DISTRIBUTION AND KEY MANAGEMENT

Distribution of Public Keys

Several techniques have been proposed for the distribution of public keys. Virtually all these

proposals

can be grouped into the following general schemes:

● Public announcement

● Publicly available directory

● Public-key authority

● Public-key certificates

Public Announcement of Public Keys

 On the face of it, the point of public-key encryption is that the public key is public.

Thus, if there is some broadly accepted public-key algorithm, such as RSA, any

participant can send his or her public key to any other participant or broadcast the key

to the community at large (Figure 10.1).

 For example, because of the growing popularity of PGP (pretty good privacy), which

makes use of RSA, many PGP users have adopted the practice of appending their public

key to messages that they send to public forums, such as USENET newsgroups and

Internet mailing lists.

Figure 10.1. Uncontrolled Public-Key Distribution

 Although this approach is convenient, it has a major weakness. Anyone can forge such

a public announcement. That is, some user could pretend to be user A and send a public

key to another participant or broadcast such a public key.

 Until such time as user A discovers the forgery and alerts other participants, the forger

is able to read all encrypted messages intended for A and can use the forged keys for

authentication.

Publicly Available Directory:

 A greater degree of security can be achieved by maintaining a publicly available

dynamic directory of public keys.

 Maintenance and distribution of the public directory would have to be the responsibility

of some trusted entity or organization (Figure 10.2). Such a scheme would include the

following elements:

1. The authority maintains a directory with a {name, public key} entry for each

Participant.

2. Each participant registers a public key with the directory authority.

Registration would

have to be in person or by some form of secure authenticated

communication.

3. A participant may replace the existing key with a new one at any time, either

because of the desire to replace a public key that has already been used for

a large amount of data, or because the corresponding private key has been

compromised in some way.

4. Participants could also access the directory electronically. For this purpose,

secure, authenticated communication from the authority to the participant is

mandatory.

Figure 10.2. Public-Key Publication

 This scheme is clearly more secure than individual public announcements but still has

vulnerabilities.

 If an adversary succeeds in obtaining or computing the private key of the directory

authority, the adversary could authoritatively pass out counterfeit public keys and

subsequently impersonate any participant and eavesdrop on messages sent to any

participant.

 Another way to achieve the same end is for the adversary to tamper with the records

kept by the authority.

Public-Key Authority:

 Stronger security for public-key distribution can be achieved by providing tighter

control over the

distribution of public keys from the directory.

 A typical scenario is illustrated in Figure 10.3, As before, the scenario assumes that a

central authority maintains a dynamic directory of public keys of all participants.

 In addition, each participant reliably knows a public key for the authority, with only

the authority knowing the corresponding private key.

The following steps:

1. A sends a timestamped message to the public-key authority containing a request for

the current public key of B.

2. The authority responds with a message that is encrypted using the authority's private

key, PRauth

Thus, A is able to decrypt the message using the authority's public key. Therefore, A is assured

that the message originated with the authority. The message includes the following:

 B's public key, PUb which A can use to encrypt messages destined for B

 The original request, to enable A to match this response with the corresponding earlier

request and to verify that the original request was not altered before reception by the

authority

 The original timestamp, so A can determine that this is not an old message from the

authority containing a key other than B's current public key

3. A stores B's public key and also uses it to encrypt a message to B containing an identifier

of A (IDA) and a nonce (N1), which is used to identify this transaction uniquely.

4. B retrieves A's public key from the authority in the same manner as A retrieved B's public

key.

5. At this point, public keys have been securely delivered to A and B, and they may begin their

protected exchange. However, two additional steps are desirable:

6. B sends a message to A encrypted with PUa and containing A's nonce (N1) as well as a new

nonce

generated by B (N2) Because only B could have decrypted message (3), the presence of N1 in

message (6) assures A that the correspondent is B.

7. A returns N2, encrypted using B's public key, to assure B that its correspondent is A.

 Thus, a total of seven messages are required. However, the initial four messages need

be used only infrequently because both A and B can save the other's public key for

future use, a technique known as caching.

 Periodically, a user should request fresh copies of the public keys of its correspondents

to ensure currency.

Figure 10.3. Public-Key Distribution Scenario

Public-Key Certificates

The scenario of Figure 10.3 is attractive, yet it has some drawbacks.

 The public-key authority could be somewhat of a bottleneck in the system, for a user

must appeal to the authority for a public key for every other user that it wishes to

contact.

 As before, the directory of names and public keys maintained by the authority is

vulnerable to tampering.

 An alternative approach, first suggested by Kohnfelder [KOHN78], is to use

certificates that can be used by participants to exchange keys without contacting a

public-key authority, in a way that is as reliable as if the keys were obtained directly

from a public-key authority.

 In essence, a certificate consists of a public key plus an identifier of the key owner, with

the whole block signed by a trusted third party. Typically, the third party is a certificate

authority, such as a government agency or a financial institution, that is trusted by

the user community.

 A user can present his or her public key to the authority in a secure manner, and obtain

a certificate. The user can then publish the certificate.

 Anyone needed this user's public key can obtain the certificate and verify that it is valid

by way of the attached trusted signature. A participant can also convey its key

information to another by transmitting its certificate. Other participants can verify that

the certificate was created by the authority.

We can place the following requirements on this scheme:

1. Any participant can read a certificate to determine the name and public key of the

certificate's

 Owner.

2. Any participant can verify that the certificate originated from the certificate

authority and is not Counterfeit.

3. Only the certificate authority can create and update certificates.

Following additional requirement:

4. Any participant can verify the currency of the certificate.

 A certificate scheme is illustrated in Figure 10.4. Each participant applies to the

certificate authority, supplying a public key and requesting a certificate.

Figure 10.4. Exchange of Public-Key Certificates

 Application must be in person or by some form of secure authenticated communication.

For participant A, the authority provides a certificate of the form

 Where PRauth is the private key used by the authority and T is a timestamp. A may then

pass this certificate on to any other participant, who reads and verifies the certificate as

follows:

 The recipient uses the authority's public key, PUauth to decrypt the certificate. Because

the certificate is readable only using the authority's public key, this verifies that the

certificate came from the certificate authority.

 The elements IDA and PUa provide the recipient with the name and public key of the

certificate's holder. The timestamp T validates the currency of the certificate. The

timestamp counters the following scenario. A's private key is learned by an adversary.

 A generates a new private/public key pair and applies to the certificate authority for a

new certificate. Meanwhile, the adversary replays the old certificate to B.

 If B then encrypts messages using the compromised old public key, the adversary can

read those messages. In this context, the compromise of a private key is comparable to

the loss of a credit card.

 The owner cancels the credit card number but is at risk until all possible communicants

are aware that the old credit card is obsolete. Thus, the timestamp serves as something

like an expiration date. If a certificate is sufficiently old, it is assumed to be expired.

 One scheme has become universally accepted for formatting public-key certificates: the

X.509 standard. X.509 certificates are used in most network security applications,

including IP security, secure sockets layer (SSL), secure electronic transactions

(SET), and S/MIME,

5.9. KEY MANAGEMENT

Contents

 Introduction

 Distribution of Public Keys

 Distribution of Secret Keys Using Public-Key Cryptography

Introduction:

One of the major roles of public-key encryption has been to address the problem of key

distribution. There are actually two distinct aspects to the use of public-key cryptography in

this regard:

● The distribution of public keys

● The use of public-key encryption to distribute secret keys.

Distribution of Secret Keys Using Public-Key Cryptography

 Once public keys have been distributed or have become accessible, secure

communication that thwarts However, few users will wish to make exclusive use of

public-key encryption for communication because of the relatively slow data rates that

can be achieved.

 Accordingly, public-key encryption provides for the distribution of secret keys to be

used for conventional encryption.

Simple Secret Key Distribution:

An extremely simple scheme was put forward by Merkle [MERK79], as illustrated in Figure

10.5. If A

wishes to communicate with B, the following procedure is employed:

1. A generates a public/private key pair {PUa, PRa} and transmits a message to B consisting of

PUa

and an identifier of A, IDA.

2. B generates a secret key, Ks, and transmits it to A, encrypted with A's public key.

3. A computes D(PRa, E(PUa, Ks)) to recover the secret key. Because only A can decrypt the

message, only A and B will know the identity of Ks.

4. A discards PUa and PRa and B discards PUa.

Figure 10.5. Simple Use of Public-Key Encryption to Establish a Session Key

 A and B can now securely communicate using conventional encryption and the session

key Ks. At the completion of the exchange, both A and B discard Ks. Despite its

simplicity, this is an attractive protocol.

 No keys exist before the start of the communication and none exist after the completion

of communication. Thus, the risk of compromise of the keys is minimal. At the same

time, the communication is secure from eavesdropping.

 The protocol depicted in Figure 10.5 is insecure against an adversary who can intercept

messages and then either relay the intercepted message or substitute another message

(see Figure 1.4c). Such an attack is known as a man-in-the-middle attack .

In this case, if an adversary, E, has control of the intervening communication channel, then E

can compromise the communication in the following fashion without being detected:

1. A generates a public/private key pair {PUa, PRa} and transmits a message intended

for B

 consisting of PUa and an identifier of A, IDA.

2. E intercepts the message, creates its own public/private key pair {PUe, PRe} and

transmits PUe|| IDA to B.

 3. B generates a secret key, Ks, and transmits E(PUe, Ks).

 4. E intercepts the message, and learns Ks by computing D(PRe, E(PUe, Ks)).

 5. E transmits E(PUa, Ks) to A.

 The result is that both A and B know Ks and are unaware that Ks has also been revealed

to E. A and B can now exchange messages using Ks E no longer actively interferes

with the communications channel but simply eavesdrops.

 Knowing Ks E can decrypt all messages, and both A and B are unaware of the problem.

Thus, this simple protocol is only useful in an environment where the only threat is

eavesdropping.

Secret Key Distribution with Confidentiality and Authentication:

Figure 10.6, based on an approach, provides protection against both active and passive attacks.

We begin at a point when it is assumed that A and B have exchanged public keys by one of the

schemes described earlier in this section.

Then the following steps occur:

1. A uses B's public key to encrypt a message to B containing an identifier of A (IDA)

and a

Nonce (N1), which is used to identify this transaction uniquely.

2. B sends a message to A encrypted with PUa and containing A's nonce (N1) as well

as a new

Nonce generated by B (N2) Because only B could have decrypted message (1), the

presence of N1 in message (2) assures A that the correspondent is B.

 3. A returns N2 encrypted using B's public key, to assure B that its correspondent is A.

 4. A selects a secret key Ks and sends M = E(PUb, E(PRa, Ks)) to B. Encryption of this

message

 With B's public key ensures that only B can read it; encryption with A's private key

ensures

 That only A could have sent it.

5. B computes D(PUa, D(PRb, M)) to recover the secret key.

Figure 10.6. Public-Key Distribution of Secret Keys

Notice that the first three steps of this scheme are the same as the last three steps of Figure

10.3. The

result is that this scheme ensures both confidentiality and authentication in the exchange of a

secret key.

A Hybrid Scheme

 Yet another way to use public-key encryption to distribute secret keys is a hybrid

approach in use on IBM mainframes scheme retains the use of a key distribution

center (KDC) that shares a secret master key with each user and distributes secret

session keys encrypted with the master key.

 A public key scheme is used to distribute the master keys. The following rationale is

provided for using this three-level approach:

● Performance: There are many applications, especially transaction-oriented applications, in

which the session keys change frequently.Distribution of session keys by public-key encryption

could degrade overall system performance because of the relatively high computational load

of public-key encryption and decryption.

 With a three-level hierarchy, public-key encryption is used only occasionally to update the

master key between a user and the KDC.

● Backward compatibility: The hybrid scheme is easily overlaid on an existing KDC scheme,

with

minimal disruption or software changes.

The addition of a public-key layer provides a secure, efficient means of distributing master

keys. This is

an advantage in a configuration in which a single KDC serves a widely distributed set of users.

5.10. DIFFIE HELLMAN KEY EXCHANGE

Contents

 Introduction

 The Algorithm

 Key Exchange Protocols

 Man-in-the-Middle Attack

Introduction

 The Diffie-Hellman algorithm depends for its effectiveness on the difficulty of

computing discrete logarithms.

 That is, if a is a primitive root of the prime number p, then the numbers a mod p, a2

mod p,c, ap-1 mod p are distinct and consist of the integers from 1 through p - 1 in some

permutation. For any integer b and a primitive root a of prime number p, we can find a

unique exponent i such that b K ai (mod p) where 0 … i … (p - 1).

 The exponent i is referred to as the discrete logarithm of b for the base a, mod p.

The Algorithm:

 Figure 10.1 summarizes the Diffie-Hellman key exchange algorithm. For this

scheme, there are two publicly known numbers: a prime number q and an integer a that

is a primitive root of q. Suppose the users A and B wish to create a shared key.

Figure 10.1 The Diffie-Hellman Key Exchange

 User A selects a random integer XA 6 q and computes YA = aXA mod q. Similarly,

user B independently selects a random integer XB 6 q and computes YB = aXB mod q.

Each side keeps the X value private and makes the Y value available publicly to the

other side.

 Thus, XA is A’s private key and YA is A’s corresponding public key, and similarly for

B. User A computes the key as K = (YB)XA mod q and user B computes the key as K

= (YA)XB mod q. These two calculations produce identical results:

 The result is that the two sides have exchanged a secret value. Typically, this secret

value is used as shared symmetric secret key. Now consider an adversary who can

observe the key exchange and wishes to determine the secret key K.

 Because XA and XB are private, an adversary only has the following ingredients to

work with: q, a, YA, and YB. Thus, the adversary is forced to take a discrete logarithm

to determine the key.

 The adversary can then calculate the key K in the same manner as user B calculates it.

That is, the adversary can calculate K as

 The security of the Diffie-Hellman key exchange lies in the fact that, while it is

relatively easy to calculate exponentials modulo a prime, it is very difficult to calculate

discrete logarithms. For large primes, the latter task is considered infeasible.

Key Exchange Protocols

Figure 10.1 shows a simple protocol that makes use of the Diffie-Hellman calculation. Suppose

that user A wishes to set up a connection with user B and use a secret key to encrypt messages

on that connection.

 User A can generate a one-time private key XA, calculate YA, and send that to user B.

User B responds by generating a private value XB, calculating YB, and sending YB to

user A. Both users can now calculate the key.

 The necessary public values q and α would need to be known ahead of time.

Alternatively, user A could pick values for q and a and include those in the first

message.

Man-in-the-Middle Attack:

 The protocol depicted in Figure 10.1 is insecure against a man-in-the-middle attack.

Suppose Alice and Bob wish to exchange keys, and Darth is the adversary. The Attack

proceeds as follows (Figure 10.2).

Figure 10.2 Man-in-the-Middle Attack

 At this point, Bob and Alice think that they share a secret key, but instead Bob and

Darth share secret key K1 and Alice and Darth share secret key K2. All future

communication between Bob and Alice is compromised in the following way.

1. Alice sends an encrypted message M: E(K2, M).

2. Darth intercepts the encrypted message and decrypts it to recover M.

3. Darth sends Bob E(K1, M) or E(K1, M′), where M′ is any message. In the

first case, Darth simply wants to eavesdrop on the communication without

altering it. In the second case, Darth wants to modify the message going to Bob.

5.11. ELGAMAL CRYPTOSYSTEM

In 1984, T. Elgamal announced a public-key scheme based on discrete logarithms, closely

related to the Diffie-Hellman technique. The ElGamal2 cryptosystem is used in some form in

a number of standards including the digital signature standard (DSS), and the S/MIME

e-mail standard.

As with Diffie-Hellman, the global elements of ElGamal are a prime number and , which is a

primitive root of .

User A generates a private/public key pair as follows:

Any user B that has access to A’s public key can encrypt a message as follows:

User A recovers the plaintext as follows:

These steps are summarized in following figure.

It corresponds to following scenario :

Alice generates a public/private key pair; Bob encrypts using Alice’s public key; and Alice

decrypts using her private key.

Let us demonstrate why the ElGamal scheme works. First, we show how is recovered by the

decryption process:

The, K functions as a one-time key, used to encrypt and decrypt the message.K C1

Elgamal Cryptosystem

5.12. ELLIPTIC CURVE ARITHMETIC

Contents

 Elliptic Curves over Real Numbers

 Elliptic Curves over Zp

 Elliptic Curves over GF(2m)

 Most of the products and standards that use public-key cryptography for encryption and

digital signatures use RSA. As we have seen, the key length for secure RSA use has

increased over recent years, and this has put a heavier processing load on applications

using RSA.

 This burden has ramifications, especially for electronic commerce sites that conduct

large numbers of secure transactions. A competing system challenges RSA: elliptic

curve cryptography (ECC). ECC is showing up in standardization efforts, including

the IEEE P1363 Standard for Public-Key Cryptography.

 The principal attraction of ECC, compared to RSA, is that it appears to offer equal

security for a far smaller key size, thereby reducing processing overhead.

 On the other hand, although the theory of ECC has been around for some time, it is only

recently that products have begun to appear and that there has been sustained

cryptanalytic interest in probing for weaknesses. Accordingly, the confidence level in

ECC is not yet as high as that in RSA.

 ECC is fundamentally more difficult to explain than either RSA or Diffie- Hellman,

and a full mathematical description is beyond the scope of this book. This section and

the next give some background on elliptic curves and ECC.

 We begin with a brief review of the concept of abelian group. Next, we examine the

concept of elliptic curves defined over the real numbers. This is followed by a look at

elliptic curves defined over finite fields. Finally, we are able to examine elliptic curve

ciphers.

 Abelian Groups an abelian group G, sometimes denoted by {G, .}, is a set of elements

with a binary operation, denoted by . , that associates to each ordered pair (a, b) of

elements in G an element (a . b) in G, such that the following axioms are obeyed:3

 A number of public-key ciphers are based on the use of an abelian group.

 For example, Diffie-Hellman key exchange involves multiplying pairs of nonzero

integers modulo a prime number q. Keys are generated by exponentiation

 An elliptic curve is defined by an equation in two variables with coefficients. For

cryptography, the variables and coefficients are restricted to elements in a finite field,

which results in the definition of a finite abelian group.

 Before looking at this, we first look at elliptic curves in which the variables and

coefficients are real numbers. This case is perhaps easier to visualize.

Elliptic Curves over Real Numbers:1

 Elliptic curves are not ellipses. They are so named because they are described by cubic

equations, similar to those used for calculating the circumference of an ellipse. In

general, cubic equations for elliptic curves take the following form, known as a

Weierstrass equation:

 where a, b, c, d, e are real numbers and x and y take on values in the real numbers.4 For

our purpose, it is sufficient to limit ourselves to equations of the form

 Such equations are said to be cubic, or of degree 3, because the highest

 Exponent they contain is a 3. Also included in the definition of an elliptic curve is a

single element denoted O and called the point at infinity or the zero point, which we

discuss subsequently. To plot such a curve, we need to compute

 For given values of a and b, the plot consists of positive and negative values of y for

each value of x. Thus, each curve is symmetric about y = 0. Figure 10.4 shows two

examples of elliptic curves. As you can see, the formula sometimes produces

weirdlooking curves.

 Now, consider the set of points E(a, b) consisting of all of the points (x, y) that satisfy

Equation (10.1) together with the element O. Using a different value of the pair (a, b)

results in a different set E(a, b).

 Using this terminology, the two curves in Figure 10.4 depict the sets E(-1, 0) and E(1,

1), respectively.

Figure 10.4 Example of Elliptic Curves

Elliptic Curves over Zp

 Elliptic curve cryptography makes use of elliptic curves in which the variables and

coefficients are all restricted to elements of a finite field.

 Two families of elliptic curves are used in cryptographic applications: prime curves

over Zp and binary

 curves over GF(2m). For a prime curve over Zp, we use a cubic equation in which the

variables and coefficients all take on values in the set of integers from 0 through p - 1

and in which calculations are performed modulo p.

 For a binary curve defined over GF(2m), the variables and coefficients all take on

values in GF(2m) and in calculations are performed over GF(2m).

 There is no obvious geometric interpretation of elliptic curve arithmetic over finite

fields. The algebraic interpretation used for elliptic curve arithmetic over real numbers

does readily carry over, and this is the approach we take.

 For elliptic curves over Zp, as with real numbers, we limit ourselves to equations of the

form of Equation (10.1), but in this case with coefficients and variables limited to Zp:

 Now consider the set Ep(a, b) consisting of all pairs of integers (x, y) that satisfy

Equation (10.5), together with a point at infinity O. The coefficients a and b and the

variables x and y are all elements of Zp.

 For example, let p = 23 and consider the elliptic curve y2 = x3 + x + 1. In this case, a

= b = 1. Note that this equation is the same as that of Figure 10.4b. The figure shows a

continuous curve with all of the real points that satisfy the equation. For the set E23(1,

1), we are only interested in the nonnegative integers in the quadrant from (0, 0) through

(p - 1, p - 1) that satisfy the equation mod p.

 Table 10.1 lists the points (other than O) that are part of E23(1, 1). Figure 10.5 plots

the points of E23(1, 1); note that the points, with one exception, are symmetric about y

= 11.5.

 It can be shown that a finite abelian group can be defined based on the set Ep(a, b)

provided that (x3 + ax + b) mod p has no repeated factors. This is equivalent to the

condition

 The last step in the preceding equation involves taking the multiplicative inverse of 4

in Z23. This can be done using the extended Euclidean algorithm defined in Section

4.4. To confirm, note that (6 * 4) mod 23 = 24 mod 23 = 1.

 For determining the security of various elliptic curve ciphers, it is of some interest to

know the number of points in a finite abelian group defined over an elliptic curve. In

the case of the finite group EP(a, b), the number of points N is bounded by

 Note that the number of points in Ep(a, b) is approximately equal to the number of

elements in Zp, namely p elements.

Elliptic Curves over GF(2m)

 Recall from Chapter 4 that a finite field GF(2m) consists of 2m elements, together with

addition and multiplication operations that can be defined over polynomials.

 For elliptic curves over GF(2m), we use a cubic equation in which the variables and

coefficients all take on values in GF(2m) for some number m and in which calculations

are performed using the rules of arithmetic in GF(2m).

 It turns out that the form of cubic equation appropriate for cryptographic applications

for elliptic curves is somewhat different for GF(2m) than for Zp. The form is

 Where it is understood that the variables x and y and the coefficients a and b are

elements of GF(2m) and that calculations are performed in GF(2m).

 Now consider the set E2m(a, b) consisting of all pairs of integers (x, y) that satisfy

Equation (10.7), together with a point at infinity O.

 For example, let us use the finite field GF(24) with the irreducible polynomial f(x) =

x4 + x + 1. This yields a generator g that satisfies f(g) = 0 with a value of g4 = g + 1, or

in binary, g = 0010. We can develop the powers of g as follows.

5.13. ELLIPTIC CURVE CRYPTOGRAPHY

Contents

 Analog of Diffie-Hellman Key Exchange

 Elliptic Curve Encryption/Decryption

 Security of Elliptic Curve Cryptography

 The addition operation in ECC is the counterpart of modular multiplication in RSA,

and multiple addition is the counterpart of modular exponentiation.

 To form a cryptographic system using elliptic curves, we need to find a “hard problem”

corresponding to factoring the product of two primes or taking the discrete logarithm.

 Consider the equation Q = kP where Q, P ∈ EP(a, b) and k 6 p. It is relatively easy to

calculate Q given k and P, but it is hard to determine k given Q and P. This is called the

discrete logarithm problem for elliptic curves.

 This is the group defined by the equation y2 mod 23 = (x3 + 9x + 17) mod 23. What is

the discrete logarithm k of Q = (4, 5) to the base P = (16, 5)? The brute-force method is

to compute multiples of P until

Analog of Diffie-Hellman Key Exchange

 Key exchange using elliptic curves can be done in the following manner. First pick a

large integer q, which is either a prime number p or an integer of the form 2m, and

elliptic curve parameters a and b for Equation (10.5) or Equation (10.7). This defines

the elliptic group of points Eq(a, b).

 Next, pick a base point G = (x1, y1) in Ep(a, b) whose order is a very large value n.

The order n of a point G on an elliptic curve is the smallest positive integer n such that

nG = 0 and G are parameters of the cryptosystem known to all participants.

 A key exchange between users A and B can be accomplished as follows (Figure 10.7).

Elliptic Curve Encryption/Decryption

 Several approaches to encryption/decryption using elliptic curves have been analyzed

in the literature. In this subsection, we look at perhaps the simplest. The first task in this

system is to encode the plaintext message m to be sent as an (x, y) point Pm

 It is the point Pm that will be encrypted as a ciphertext and subsequently decrypted.

Note that we cannot simply encode the message as the x or y coordinate of a point,

because not all such coordinates are in Eq(a, b);

Security of Elliptic Curve Cryptography

 The security of ECC depends on how difficult it is to determine k given kP and P. This

is referred to as the elliptic curve logarithm problem. The fastest known technique for

taking the elliptic curve logarithm is known as the Pollard rho method..

UNIT V

SECURITY PRACTICE AND SYSTEM SECURITY

Electronic Mail security – PGP, S/MIME – IP security – Web Security – SYSTEM

SECURITY: Intruders – Malicious software – viruses – Firewalls.

5.1. ELECTRONIC MAIL SECURITY

 In virtually all distributed environments, electronic mail is the most heavily used

network- based application. Users expect to be able to, and do, send e-mail to others who

are connected directly or indirectly to the Internet, regardless of host operating system

or communications suite.

 With the explosively growing reliance on e-mail, there grows a demand for

authentication and confidentiality services. Two schemes stand out as approaches that

enjoy widespread use: Pretty Good Privacy (PGP) and S/MIME. Both are examined in

this chapter and Domain Keys Identified Mail.

Contents

 Pretty Good Privacy

o Notation

o Operational Description

 S/MIME

o RFC 5322

o Multipurpose Internet Mail Extensions

o S/MIME Functionality

o S/MIME Messages

o S/MIME Certificate Processing

o Enhanced Security Services

5.1.1. PGP

Contents

 Pretty Good Privacy

o Notation

o Operational Description

Pretty Good Privacy(PGP)

 PGP is a remarkable phenomenon. Largely the effort of a single person, Phil

Zimmermann, PGP provides a confidentiality and authentication service that can be

used for electronic mail and file storage applications.

 In essence, Zimmermann has done the following:

1. Selected the best available cryptographic algorithms as building blocks.

2. Integrated these algorithms into a general-purpose application that is independent

of operating system and processor and that is based on a small set of easy-to-use

commands.

3. Made the package and its documentation, including the source code, freely

available via the Internet, bulletin boards, and commercial networks such as AOL

(America On Line).

4.Entered into an agreement with a company (Viacrypt, now Network Associates)

to provide a fully compatible, low-cost commercial version of PGP.

 Characteristics of PGP or PGP has grown explosively and is now widely used. A

number of reasons can be cited for this growth.

1. It is available free worldwide in versions that run on a variety of platforms,

including Windows, UNIX, Macintosh, and many more.

.

2. It is based on algorithms that have survived extensive public review and are

considered extremely secure. Specifically, the package includes RSA, DSS, and

Diffie-Hellman for public-key encryption; CAST-128, IDEA, and 3DES for

symmetric encryption; and SHA-1 for hash coding.

3. It has a wide range of applicability

4. It was not developed by, nor is it controlled by, any governmental or standards

organization.

.

5. PGP is now on an Internet standards track (RFC 3156; MIME Security with

OpenPGP).

6. The algorithms used are extremely secure

Notation

 Most of the notation used in this chapter has been used before, but a few terms are new.

It is perhaps best to summarize those at the beginning. The following symbols are used.

Ks = session key used in symmetric encryption scheme

PRa = private key of user A, used in public-key encryption scheme

PUa = public key of user A, used in public-key encryption scheme

EP = public-key encryption

DP = public-key decryption

EC = symmetric encryption

DC = symmetric decryption

H = hash function

} = concatenation

Z = compression using ZIP algorithm

R64 = conversion to radix 64 ASCII format1

 The PGP documentation often uses the term secret key to refer to a key paired with a

public key in a public-key encryption scheme.

 As was mentioned earlier, this practice risks confusion with a secret key used for

symmetric encryption. Hence, we use the term private key instead.

Operational Description in PGP

 The actual operation of PGP, as opposed to the management of keys, consists of four

services:

o Authentication,

o Confidentiality,

o Confidentiality and Authentication,

o E-mail

o Compatibility

 (Table 19.1). We examine each of these in turn.

Authentication

 Figure 19.1a illustrates the digital signature service provided by PGP. This is the digital

signature scheme discussed in Chapter 13 and illustrated in Figure 13.2. The sequence

is as follows.

1. The sender creates a message.

2. SHA-1 is used to generate a 160-bit hash code of the message.

3. The hash code is encrypted with RSA using the sender’s private key, and

the result is prepended to the message.

4. The receiver uses RSA with the sender’s public key to decrypt and recover

the hash code.

5. The receiver generates a new hash code for the message and compares it with

the decrypted hash code. If the two match, the message is accepted as authentic

 The combination of SHA-1 and RSA provides an effective digital signature scheme.

Because of the strength of RSA, the recipient is assured that only the possessor of the

matching private key can generate the signature.

 Because of the strength of SHA-1, the recipient is assured that no one else could

generate a new message that matches the hash code and, hence, the signature of the

original message. As an alternative, signatures can be generated using DSS/SHA-1.

 Although signatures normally are found attached to the message or file that they sign,

this is not always the case: Detached signatures are supported.

 A detached signature may be stored and transmitted separately from the message it

signs. This is useful in several contexts. A user may wish to maintain a separate

signature log of all messages sent or received. A detached signature of an executable

program can detect subsequent virus infection.

 Finally, detached signatures can be used when more than one party must sign a

document, such as a legal contract. Each person’s signature is independent and

therefore is applied only to the document. Otherwise, signatures would have to be

nested, with the second signer signing both the document and the first signature, and

so on.

Confidentiality

 Another basic service provided by PGP is confidentiality, which is provided by

encrypting messages to be transmitted or to be stored locally as files.

 In both cases, the symmetric encryption algorithm CAST-128 may be used.

 Alternatively, IDEA or 3DES may be used. The 64-bit cipher feedback (CFB) mode is

used.

 As always, one must address the problem of key distribution. In PGP, each symmetric

key is used only once.

 That is, a new key is generated as a random 128-bit number for each message. Thus,

although this is referred to in the documentation as a session key, it is in reality a one-

time key. Because it is to be used only once, the session key is bound to the message

and transmitted with it.

 To protect the key, it is encrypted with the receiver’s public key. Figure 19.1b illustrates

the sequence,

Which can be described as follows?

1. The sender generates a message and a random 128-bit number to be used as a

session key for this message only.

2. The message is encrypted using CAST-128 (or IDEA or 3DES) with the session key.

3. The session key is encrypted with RSA using the recipient’s public key and is

prepended to the message.

4. The receiver uses RSA with its private key to decrypt and recover the session key.

5. The session key is used to decrypt the message.

Confidentiality and Authentication

 As Figure 19.1c illustrates, both services may be used for the same message. First, a

signature is generated for the plaintextmessage and prepended to the message.

 Then the plaintext message plus signatureis encrypted using CAST-128 (or IDEA or

3DES), and the session key is encrypted using RSA (or ElGamal).

 This sequence is preferable to the opposite: encrypting the message and then generating

a signature for the encrypted message.

 It is generally more convenient to store a signature with a plaintext version of a

message. Furthermore, for purposes of third-party verification, if the signature is

performed first, a third party need not be concerned with the symmetric key when

verifying the signature.

Compression

 As a default, PGP compresses the message after applying the signature but before

encryption. This has the benefit of saving space both for e-mail transmission and for

file storage.

 The placement of the compression algorithm, indicated by Z for compression and Z-1

for decompression in Figure 19.1, is critical.

1. The signature is generated before compression for two reasons:

a. It is preferable to sign an uncompressed message so that one can store only the

uncompressed message together with the signature for future verification. If one signed

a compressed document, then it would be necessary either to store a compressed version

of the message for later verification or to recompress the message when verification is

required.

b. Even if one were willing to generate dynamically a recompressed message for

verification, PGP’s compression algorithm presents a difficulty. The algorithm is not

deterministic; various implementations of the algorithm achieve different tradeoffs in

running speed versus compression ratio and, as a result, produce different compressed

forms. However, these different compression algorithms are interoperable because any

version of the algorithm can correctly decompress the output of any other version.

Applying the hash function and signature after compression would constrain all PGP

implementations to the same version of the compression algorithm.

2. Message encryption is applied after compression to strengthen cryptographic

security. Because the compressed message has less redundancy than the original

plaintext, cryptanalysis is more difficult.

.

E-mail Compatibility

 When PGP is used, at least part of the block to be transmitted is encrypted. If only the

signature service is used, then the message digest is encrypted (with the sender’s private

key). If the confidentiality service is used, the message plus signature (if present) are

encrypted (with a one-time symmetric key).

 Thus, part or the entire resulting block consists of a stream of arbitrary 8-bit octets.

However, many electronic mail systems only permit the use of blocks consisting of

ASCII text. To accommodate this restriction, PGP provides the service of converting

the raw 8-bit binary stream to a stream of printable ASCII characters.

 The scheme used for this purpose is radix-64 conversion. Each group of three octets of

binary data is mapped into four ASCII characters. This format also appends a CRC to

detect transmission errors.

 The use of radix 64 expands a message by 33%. Fortunately, the session key and

signature portions of the message are relatively compact, and the plaintext message has

been compressed. In fact, the compression should be more than enough to compensate

for the radix-64 expansion.

5.1.2. S/MIME

Contents

 S/MIME

o RFC 5322

o Multipurpose Internet Mail Extensions

o S/MIME Functionality

o S/MIME Messages

o S/MIME Certificate Processing

o Enhanced Security Services

S/MIME

 Secure/Multipurpose Internet Mail Extension (S/MIME) is a security enhancement to

the MIME Internet e-mail format standard based on technology from RSA Data

Security.

 Although both PGP and S/MIME are on an IETF standards track, it appears likely that

S/MIME will emerge as the industry standard for commercial and organizational use,

while PGP will remain the choice for personal e-mail security for many users. S/MIME

is defined in a number of documents—most importantly RFCs 3370, 3850, 3851, and

3852.

RFC 5322

 RFC 5322 defines a format for text messages that are sent using electronic mail. It has

been the standard for Internet-based text mail messages and remains in common use.

 In the RFC 5322 context, messages are viewed as having an envelope and contents. The

envelope contains whatever information is needed to accomplish transmission and

delivery. The contents compose the object to be delivered to the recipient.

 The RFC 5322 standard applies only to the contents. However, the content standard

includes a set of header fields that may be used by the mail system to create the

envelope, and the standard is intended to facilitate the acquisition of such information

by programs.

 The overall structure of a message that conforms to RFC 5322 is very simple. A

message consists of some number of header lines (the header) followed by unrestricted

text (the body).

 The header is separated from the body by a blank line. Put differently, a message is

ASCII text, and all lines up to the first blank line are assumed to be header lines used

by the user agent part of the mail system.

 A header line usually consists of a keyword, followed by a colon, followed by the

keyword’s arguments; the format allows a long line to be broken up into several lines.

The most frequently used keywords are From, To, Subject, and Date.

 Here is an example message:

 Another field that is commonly found in RFC 5322 headers is Message-ID. This field

contains a unique identifier associated with this message.

Multipurpose Internet Mail Extensions

 Multipurpose Internet Mail Extension (MIME) is an extension to the RFC 5322

framework that is intended to address some of the problems and limitations of the use

of Simple Mail Transfer Protocol (SMTP), defined in RFC 821, or some other mail

transfer protocol and RFC 5322 for electronic mail. [PARZ06]

 Lists the following limitations of the SMTP/5322 scheme.

1. SMTP cannot transmit executable files or other binary objects. A number of

schemes are in use for converting binary files into a text form that can be used

by SMTP mail systems, including the popular UNIX UUencode/ UUdecode

scheme. However, none of these is a standard or even a de facto standard.

2. SMTP cannot transmit text data that includes national language characters,

because these are represented by 8-bit codes with values of 128 decimal or

higher, and SMTP is limited to 7-bit ASCII.

3. SMTP servers may reject mail message over a certain size.

4. SMTP gateways that translate between ASCII and the character code

EBCDIC do not use a consistent set of mappings, resulting in translation

problems.

5. SMTP gateways to X.400 electronic mail networks cannot handle nontextual

6. Some SMTP implementations do not adhere completely to the SMTP

standards defined in RFC 821. Common problems include:

• Deletion, addition, or reordering of carriage return and linefeed

• Truncating or wrapping lines longer than 76 characters

• Removal of trailing white space (tab and space characters)

• Padding of lines in a message to the same length

• Conversion of tab characters into multiple

 Overview the MIME specification includes the following elements.

1. Five new message header fields are defined, which may be included in an

RFC 5322 header. These fields provide information about the body of the

message.

2. A number of content formats are defined, thus standardizing representations

that support multimedia electronic mail.

3. Transfer encodings are defined that enable the conversion of any content

format into a form that is protected from alteration by the mail system.

 The five header fields defined in MIME are

o MIME-Version: Must have the parameter value 1.0. This field indicates that

the message conforms to RFCs 2045 and 2046.

o Content-Type: Describes the data contained in the body with sufficient detail

that the receiving user agent can pick an appropriate agent or mechanism to

represent the data to the user or otherwise deal with the data in an appropriate

manner.

o Content-Transfer-Encoding: Indicates the type of transformation that has

been used to represent the body of the message in a way that is acceptable for

mail transport.

o Content-ID: Used to identify MIME entities uniquely in multiple contexts.

o Content-Description: A text description of the object with the body; this is

useful when the object is not readable (e.g., audio data).

Mail Message Header

 There are four subtypes of the multipart type, all of which have the same overall

syntax.

 The multipart/mixed subtype is used when there are multiple independent body parts

that need to be bundled in a particular order.

 For the multipart/ parallel subtype, the order of the parts is not significant. If the

recipient’s system is appropriate, the multiple parts can be presented in parallel.

 For example, a picture

 For the multipart/alternative subtype, the various parts are different representations

of the same information. The following is an example:

 The multipart/digest subtype is used when each of the body parts is interpreted as an

RFC 5322 message with headers

MIME Transfer Encodings

.

 The MIME standard defines two methods of encoding data. The Content- Transfer-

Encoding field can actually take on six values, as listed in Table 19.3. However, three

of these values (7bit, 8bit, and binary) indicate that no encoding has been done but

provide some information about the nature of the data.

Mail Message Format

MIME-Version: 1.0

From: Nathaniel Borenstein <nsb@bellcore.com>

To: Ned Freed <ned@innosoft.com>

Subject: A multipart example

Content-Type: multipart/mixed;

Content-type: text/plain; charset=US-ASCII

Content-Type: multipart/parallel; boundary=unique-boundary-2

Content-Type: audio/basic

Content-Transfer-Encoding: base64

Content-type: text/enriched

Content-Type: message/rfc822

From: (mailbox in US-ASCII)

To: (address in US-ASCII)

Subject: (subject in US-ASCII)

Content-Type: Text/plain; charset=ISO-8859-1

Content-Transfer-Encoding: Quoted-printable

Figure 19.3 Example MIME Message Structure

S/MIME Functionality

 In terms of general functionality, S/MIME is very similar to PGP. Both offer the ability

to sign and/or encrypt messages.

S/MIME provides the following functions.

o Enveloped data: This consists of encrypted content of any type and

encryptedcontent encryption keys for one or more recipients.

o Signed data: A digital signature is formed by taking the message digest of the

content to be signed and then encrypting that with the private key of the signer.

The content plus signature are then encoded using base64 encoding. A signed

data message can only be viewed by a recipient with S/MIME capability.

o Clear-signed data: As with signed data, a digital signature of the content is

formed. However, in this case, only the digital signature is encoded using base64.

As a result, recipients without S/MIME capability can view the message content,

although they cannot verify the signature.

o Signed and enveloped data: Signed-only and encrypted-only entities may be

nested, so that encrypted data may be signed and signed data or clear-signed

data may be encrypted.

Cryptographic Algorithms

 Table 19.5 summarizes the cryptographic algorithms used in S/MIME. S/MIME uses

the following terminology taken from RFC 2119 (Key Words for use in RFCs to

Indicate Requirement Levels) to specify the requirement level:

o MUST: The definition is an absolute requirement of the specification. An

implementation must include this feature or function to be in conformance with

the specification.

o SHOULD: There may exist valid reasons in particular circumstances to ignore

this feature or function, but it is recommended that an implementation include

the feature or function.

S/MIME Messages

 The general procedures for S/MIME message preparation

1. Securing a MIME Entity

 S/MIME secures a MIME entity with a signature, encryption, or both.

 A MIME entity may be an entire message (except for the RFC 5322 headers), or if the

MIME content type is multipart, then a MIME entity is one or more of the subparts of

the message. The MIME entity is prepared according to the normal rules for MIME

message preparation. Then the MIME entity plus some security-related data, such as

algorithm identifiers and certificates, are processed by S/MIME to produce what is

known as a PKCS object.

 A PKCS object is then treated as message content and wrapped in MIME (provided

with appropriate MIME headers).

 The message to be sent is converted to canonical form. In particular, for a given type

and subtype, the appropriate canonical form is used for the message content. For a

multipart message, the appropriate canonical form is used for each subpart.

2. Enveloped Data

 The steps for preparing an envelopedData MIME entity are

1. Generate a pseudorandom session key for a particular symmetric encryption

algorithm (RC2/40 or triple DES).

2. For each recipient, encrypt the session key with the recipient’s public RSA key.

3. For each recipient, prepare a block known as RecipientInfo that contains

an identifier of the recipient’s public-key certificate,2 an identifier of the algorithm

used to encrypt the session key, and the encrypted session key.

4. Encrypt the message content with the session key.

A sample message (excluding the RFC 5322 headers) is

Content-Type: application/pkcs7-mime; smime-type=envelopeddata;

name=smime.p7m

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7m

rfvbnj756tbBghyHhHUujhJhjH77n8HHGT9HG4VQpfyF467GhIGfHfYT6

7n8HHGghyHhHUujhJh4VQpfyF467GhIGfHfYGTrfvbnjT6jH7756tbB9H

f8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpfyF4

0GhIGfHfQbnj756YT64V

 To recover the encrypted message, the recipient first strips off the base64 encoding.

Then the recipient’s private key is used to recover the session key. Finally, the message

content is decrypted with the session key.

3. SignedData

 . The steps for preparing a signedData MIME entity are

1. Select a message digest algorithm (SHA or MD5).

2. Compute the message digest (hash function) of the content to be signed.

3. Encrypt the message digest with the signer’s private key.

4. Prepare a block known as SignerInfo that contains the signer’s public-key

certificate, an identifier of the message digest algorithm, an identifier of the

algorithm used to encrypt the message digest, and the encrypted message digest.

A sample message as follows

Content-Type: application/pkcs7-mime; smime-type=

signed-data; name=smime.p7m

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7m

567GhIGfHfYT6ghyHhHUujpfyF4f8HHGTrfvhJhjH776tbB9HG4VQbnj7

77n8HHGT9HG4VQpfyF467GhIGfHfYT6rfvbnj756tbBghyHhHUujhJhjH

HUujhJh4VQpfyF467GhIGfHfYGTrfvbnjT6jH7756tbB9H7n8HHGghyHh

6YT64V0GhIGfHfQbnj75

 The recipient independently computes the message digest and compares it to the

decrypted message digest to verify the signature.

4. Clear Signing

 Clear signing is achieved using the multipart content type with a signed subtype. As

was mentioned, this signing process does not involve transforming the message to be

signed, so that the message is sent “in the clear.” Thus, recipients with MIME capability

but not S/MIME capability are able to read the incoming message.

 A multipart/signed message has two parts.

o The first part can be any MIME type but must be prepared so that it will not be

altered during transfer from source to destination. This means that if the first

part is not 7bit, then it needs to be encoded using base64 or quoted-printable.

o This second part has a MIME content type of application and a subtype of

pkcs7-signature. Here is a sample message:

Content-Type: multipart/signed;

protocol="application/pkcs7-signature";

micalg=sha1; boundary=boundary42

—boundary42

Content-Type: text/plain

This is a clear-signed message.

—boundary42

Content-Type: application/pkcs7-signature; name=smime.p7s

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7s

ghyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfHf

YT6

4VQpfyF467GhIGfHfYT6jH77n8HHGghyHhHUujhJh756tbB9HGTrf

vbnj

n8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujp

fyF4

7GhIGfHfYT64VQbnj756

—boundary42—

4. Registration Request

 The certification request includes

1. Certification Request Info block

2. Identifier of the public key encryption algorithm

3. Signature of the certification RequestInfo block

S/MIME Certificate Processing

 S/MIME uses public-key certificates that conform to version 3 of X.509 . The key-

management scheme used by S/MIME is in some ways a hybrid between a strict X.509

certification hierarchy and PGP’s web of trust.

 As with the PGP model, S/MIME managers and/or users must configure each client

with a list of trusted keys and with certificate revocation lists.

1. User Agent Role

 An S/MIME user has several key-management functions to perform.

o Key generation:. A user agent SHOULD generate RSA key pairs with a length in

the range of 768 to 1024 bits and MUST NOT generate a length of less than 512

bits.

o Registration: A user’s public key must be registered with a certification authority

in order to receive an X.509 public-key certificate.

o Certificate storage and retrieval: A user requires access to a local list of

certificates in order to verify incoming signatures and to encrypt outgoing

messages.

2. VeriSign Certificates

 VeriSign provides a CA service that is intended to be compatible with S/MIME and a

variety of other applications. VeriSign issues X.509 certificates with the product name

VeriSign Digital ID.

 Each Digital ID contains the following :

o Owner’s public key

o Owner’s name or alias

o Expiration date of the Digital ID

o Serial number of the Digital ID

o Name of the certification authority that issued the Digital ID

o Digital signature of the certification authority that issued the Digital ID

 Digital IDs can also contain other user-supplied information, including

o Address

o E-mail address

o Basic registration information (country, zip code, age, and gender)

Enhanced Security Services

The details of these may change, and additional services may be added. The three services

are

o Signed receipts: A signed receipt may be requested in a SignedData object. Returning

a signed receipt provides proof of delivery to the originator of a message and allows

the originator to demonstrate to a third party that the recipient received the message

o Security labels: A security label may be included in the authenticated attributes of a

SignedData object. A security label is a set of security information regarding the

sensitivity of the content that is protected by S/MIME encapsulation. The labels may

be used for access control, by indicating which users are permitted access to an object.

o Secure mailing lists: When a user sends a message to multiple recipients, a certain

amount of per-recipient processing is required, including the use of each recipient’s

public key. The user can be relieved of this work by employing the services of an

S/MIME Mail List Agent (MLA). An MLA can take a single incoming message,

perform the recipient-specific encryption for each recipient, and forward the message..

5.2. IP SECURITY

Contents

 IP Security Overview

o Applications of IPsec

o Benefits of IPsec

o Routing Applications

 IP Security Architecture

o IPsec Documents

o IPsec Services

o Security Associations (SA)

 Transport and Tunnel Modes

IP Security Overview

 To provide security, the IAB included authentication and encryption as necessary

security features in the next-generation IP, which has been issued as IPv6. Fortunately,

these security capabilities were designed to be usable both with the current IPv4 and

the future IPv6. This means that vendors can begin offering these features now, and

many vendors now do have some IPsec capability in their products.

 The IPsec specification now exists as a set of Internet standards.

Applications of IPSec

 IPSec provides the capability to secure communications across a LAN, across private

and public WANs, and across the Internet. Examples of its use include the following:

o Secure branch office connectivity over the Internet: A company can build a

secure virtual private network over the Internet or over a public WAN. This

enables a business to rely heavily on the Internet and reduce its need for private

networks, saving costs and network management overhead.

o Secure remote access over the Internet: An end user whose system is

equipped with IP security protocols can make a local call to an Internet service

provider (ISP) and gain secure access to a company network. This reduces the

cost of toll charges for traveling employees and telecommuters.

o Establishing extranet and intranet connectivity with partners: IPSec can be

used to secure communication with other organizations, ensuring authentication

and confidentiality and providing a key exchange mechanism.

o Enhancing electronic commerce security: Even though some Web and

electronic commerce applications have built-in security protocols, the use of

IPSec enhances that security.

 The principal feature of IPSec that enables it to support these varied applications is

that it can encrypt and/or authenticate all traffic at the IP level.

 Thus, all distributed applications, including remote logon, client/server, e-mail, file

transfer, Web access, and so on, can be secured.

 Figure 20.1 is a typical scenario of IPsec usage. An organization maintains LANs at

dispersed locations. Nonsecure IP traffic is conducted on each LAN. For traffic offsite,

through some sort of private or public WAN, IPsec protocols are used.

 These protocols operate in networking devices, such as a router or firewall, that connect

each LAN to the outside world. The IPsec networking device will typically encrypt and

compress all traffic going into the WAN and decrypt and decompress traffic coming

from the WAN; these operations are transparent to workstations and servers on the

LAN.

 Secure transmission is also possible with individual users who dial into the WAN. Such

user workstations must implement the IPsec protocols to provide security.

Benefits of IPSec

 [MARK97] lists the following benefits of IPSec: When IPSec is implemented in a

firewall or router, it provides strong security that can be applied to all traffic crossing

the perimeter. Traffic within a company or workgroup does not incur the overhead of

security-related processing.

 IPSec in a firewall is resistant to bypass if all traffic from the outside must use IP, and

the firewall is the only means of entrance from the Internet into the organization.

 IPSec is below the transport layer (TCP, UDP) and so is transparent to applications.

 There is no need to change software on a user or server system when IPSec is

implemented in the firewall or router.

 Even if IPSec is implemented in end systems, upper-layer software, including

applications, is not affected.

 IPSec can be transparent to end users. There is no need to train users on security

mechanisms, issue keying material on a per-user basis, or revoke keying material

when users leave the organization.

 IPSec can provide security for individual users if needed. This is useful for offsite

workers and for setting up a secure virtual sub network within an organization for

sensitive applications.

Routing Applications

 A router advertisement (a new router advertises its presence) comes from an authorized

router.

 neighbor advertisement (a router seeks to establish or maintain a neighbor

 relationship with a router in another routing domain) comes from an authorized router.

 A redirect message comes from the router to which the initial IP packet was sent.

 A routing update is not forged.

IP Security Architecture

 The IPSec specification has become quite complex. To get a feel for the overall

architecture, we begin with a look at the documents that define IPSec. Then we

discuss IPSec services and introduce the concept of security association(SA).

1. IPsec Documents

 The IPSec specification consists of numerous documents. The most important of these,

issued in November of 1998, are RFCs 2401, 2402, 2406, and 2408:

o RFC 2401: An overview of a security architecture

o RFC 2402: Description of a packet authentication extension to IPv4 and IPv6

o RFC 2406: Description of a packet encryption extension to IPv4 and IPv6

o RFC 2408: Specification of key management capabilities

 Support for these features is mandatory for IPv6 and optional for IPv4. In both cases,

the security features are implemented as extension headers that follow the main IP

header.

 The extension header for authentication is known as the Authentication header; that for

encryption is known as the Encapsulating Security Payload (ESP) header.

 IPsec encompasses three functional areas: authentication, confidentiality, and key

anagement. The totality of the IPsec specification is scattered across dozens of RFCs

and draft IETF documents, making this the most complex and difficult to grasp of all

IETF specifications.

 The best way to grasp the scope of IPsec is to consult the latest version of the IPsec

document roadmap, which as of this writing is RFC 6071 [IP Security (IPsec) and

Internet Key Exchange (IKE) Document Roadmap,

 The documents can be categorized into the following groups.

o Architecture: Covers the general concepts, security requirements, definitions,

and mechanisms defining IPsec technology. The current specification is RFC

4301, Security Architecture for the Internet Protocol.

o Authentication Header (AH): AH is an extension header to provide message

authentication. The current specification is RFC 4302, IP Authentication

o Header. Because message authentication is provided by ESP, the use of AH

is deprecated. It is included in IPsecv3 for backward compatibility but should

not be used in new applications.

o Encapsulating Security Payload (ESP): ESP consists of an encapsulating

header and trailer used to provide encryption or combined

encryption/authentication. The current specification is RFC 4303, IP

Encapsulating Security Payload (ESP).

o Internet Key Exchange (IKE): This is a collection of documents describing

the key management schemes for use with IPsec. The main specification is

RFC 5996, Internet Key Exchange (IKEv2) Protocol, but there are a number

of related RFCs.

o Cryptographic algorithms: This category encompasses a large set of

documents that define and describe cryptographic algorithms for encryption,

message authentication, pseudorandom functions (PRFs), and cryptographic

key exchange.

o Other: There are a variety of other IPsec-related RFCs, including those dealing

with security policy and management information base (MIB) content.

Figure 16.2. IPSec Document Overview

2. IPsec Services

 IPsec provides security services at the IP layer by enabling a system to select required

ecurity protocols, determine the algorithm(s) to use for the service(s), and put in place

any cryptographic keys required to provide the requested services.

 Two protocols are used to provide security: an authentication protocol designated by

the header of the protocol, Authentication Header (AH); and a combined encryption/

authentication protocol designated by the format of the packet for that protocol,

Encapsulating Security Payload (ESP).

 RFC 4301 lists the following services:

o Access control

o Connectionless integrity

o Data origin authentication

o Rejection of replayed packets (a form of partial sequence integrity)

o Confidentiality (encryption)

o Limited traffic flow confidentiality

3. Security Associations (SA)

 A key concept that appears in both the authentication and confidentiality mechanisms

for IP is the security association (SA). An association is a one-way relationship between

a sender and a receiver that affords security services to the traffic carried on it.

 If a peer relationship is needed, for two-way secure exchange, then two security

associations are required.

 A security association is uniquely identified by three parameters:

 Security Parameters Index (SPI): A bit string assigned to this SA and having local

significance only. The SPI is carried in AH and ESP headers to enable the receiving system to

select the SA under which a received packet will be processed.

 IP Destination Address: Currently, only unicast addresses are allowed; this is the address of

the destination endpoint of the SA, which may be an end user system or a network system such

as a firewall or router.

 Security Protocol Identifier: This indicates whether the association is an AH or ESP security

Association

SA Parameters

 In each IPSec implementation, there is a nominal Security Association Database that

defines the parameters associated with each SA. A security association is normally

defined by the following parameters:

o [Sequence Number Counter: A 32-bit value used to generate the Sequence

Number field in AH or ESP headers,

o Sequence Counter Overflow: A flag indicating whether overflow of the Sequence

Number Counter should generate an auditable event and prevent further

transmission of packets on this SA (required for all implementations).

o ESP Information: Encryption and authentication algorithm, keys, initialization

values, key lifetimes, and related parameters being used with ESP (required for ESP

implementations).

o Lifetime of This Security Association: A time interval or byte count after which

an SA must be replaced with a new SA (and new SPI) or terminated, plus an

indication of which of these actions should occur (required for all implementations).

o IPSec Protocol Mode: Tunnel, transport, or wildcard (required for all

implementations). These modes are discussed later in this section.

o Path MTU: Any observed path maximum transmission unit (maximum size of a

packet that can

o be transmitted without fragmentation) and aging variables (required for all

implementations). Anti-Replay Window: Used to determine whether an inbound

AH or ESP packet is a replay,

o described in Section 16.3 (required for all implementations).

o AH Information: Authentication algorithm, keys, key lifetimes, and related

parameters being used with AH (required for AH implementations).

SA Selectors

 IPSec provides the user with considerable flexibility in the way in which IPSec

services are applied to IP traffic.

 The means by which IP traffic is related to specific SAs (or no SA in the case of traffic

allowed to bypass IPSec) is the nominal Security Policy Database (SPD).

 In its simplest form, an SPD contains entries, each of which defines a subset of IP

traffic and points to an SA for that traffic.

 In more complex environments, there may be multiple entries that potentially relate

to a single SA or multiple SAs associated with a single SPD entry. The reader is

referred to the relevant IPSec documents for a full discussion.

 Each SPD entry is defined by a set of IP and upper-layer protocol field values, called

selectors.

 In effect, these selectors are used to filter outgoing traffic in order to map it into a

particular SA. Outbound processing obeys the following general sequence for each

IP packet:

Transport and Tunnel Modes

 Both AH and ESP support two modes of use: transport and tunnel mode. The

operation of these two modes is best understood in the context of a description of ESP.

Here we provide a brief overview.

1. Transport Mode

 Transport mode provides protection primarily for upper-layer protocols. That is,

transport mode protection extends to the payload of an IP packet.1 Examples include a

TCP or UDP segment or an ICMP packet,

 The transport mode is used for end - to- end communication between two hosts (e.g., a

client and a server, or two workstations).

 When a host runs AH or ESP over IPv4, the payload is the data that normally follow

the IP header. For IPv6, the payload is the data that normally follow both the IP header

and any IPv6 extensions headers that are present, with the possible exception of the

destination options header, which may be included in the protection.

 ESP in transport mode encrypts and optionally authenticates the IP payload but not the

IP header. AH in transport mode authenticates the IP payload and selected portions of

the IP header.

2. Tunnel Mode

 Tunnel mode provides protection to the entire IP packet. To achieve this, after the AH

or ESP fields are added to the IP packet, the entire packet plus security fields is treated

as the payload of new outer IP packet with a new outer IP header.

 The entire original, inner, packet travels through a tunnel from one point of an IP

network to another; no routers along the way are able to examine the inner IP header.

Because the original packet is encapsulated, the new, larger packet may have totally

different source and destination addresses, adding to the security.

 Tunnel mode is used when one or both ends of a security association (SA) are a security

gateway, such as a firewall or router that implements IPsec.

 In tunnel mode, a number of hosts on networks behind firewalls may engage in secure

communications without implementing IPsec. The unprotected packets generated by

such hosts are tunneled through external networks by tunnel mode SAs set up by the

IPsec software in the firewall or secure router at the boundary of the local network.

 ESP in tunnel mode encrypts and optionally authenticates the entire inner IP packet,

including the inner IP header.

 AH in tunnel mode authenticates the entire inner IP packet and selected portions of the

outer IP header.

Authentication header (AH)

Contents

o Authentication header (AH)

o Anti-Replay Service

o Integrity Check Value

o Transport and Tunnel Modes

Authentication header (AH)

 .The Authentication Header provides support for data integrity and authentication of

IP packets. The data integrity feature ensures that undetected modification to a

packet's content in transit is not possible.

 The authentication feature enables an end system or network device to authenticate the

user or application and filter traffic accordingly; it also prevents the address spoofing

attacks

 Authentication is based on the use of a message authentication code (MAC), protocol

hence the two parties must share a secret key.

 The Authentication Header consists of the following fields (Figure 16.3):

o Next Header (8 bits): Identifies the type of header immediately following this

header.

o Payload Length (8 bits): Length of Authentication Header in 32-bit words,

minus 2. For

o example, the default length of the authentication data field is 96 bits, or three

32-bit words. With a three-word fixed header, there are a total of six words in

the header, and the Payload Length field has a value of 4.

o Reserved (16 bits): For future use.

o Security Parameters Index (32 bits): Identifies a security association.

o Sequence Number (32 bits): A monotonically increasing counter value,

o Authentication Data (variable): A variable-length field (must be an integral

number of 32-bit words) that contains the Integrity Check Value (ICV), or

MAC, for this packet,

Figure - IPSec Authentication Header

Anti-Replay Service

 A replay attack is one in which an attacker obtains a copy of an authenticated packet

and later transmits

 It to the intended destination. The receipt of duplicate, authenticated IP packets may

disrupt service in some way or may have some other undesired consequence. The

Sequence Number field is designed to thwart such attacks. First, we discuss sequence

number generation by the sender, and then we look at how it is processed by the

recipient.

 When a new SA is established, the sender initializes a sequence number counter to 0.

Each time that a packet is sent on this SA, the sender increments the counter and places

the value in the Sequence Number field. Thus, the first value to be used is 1. If anti-

replay is enabled (the default), the sender must not allow the sequence number to cycle

past 232 1 back to zero. Otherwise, there would be multiple valid packets with the same

sequence number. If the limit of 232 1 is reached, the sender should terminate this SA

and negotiate a new SA with a new key. Because IP is a connectionless, unreliable

service, the protocol does not guarantee that packets will be delivered in order and does

not guarantee that all packets will be delivered.

 Therefore, the IPSec authentication document dictates that the receiver should

implement a window of size W, with a default of W = 64. The right edge of the window

represents the highest sequence number, N, so far received for a valid packet. For any

packet with a sequence number in the range from N W + 1 to N that has been correctly

received (i.e., properly authenticated), the corresponding slot in the window is marked

(Figure 16.4). Inbound processing proceeds as follows when a packet is received:

1.If the received packet falls within the window and is new, the MAC is

checked. If the packet is authenticated, the corresponding slot in the window is

marked.

2. If the received packet is to the right of the window and is new, the MAC is

checked. If the packet is authenticated, the window is advanced so that this

sequence number is the right edge of the window, and the corresponding slot in

the window is marked.

3. If the received packet is to the left of the window, or if authentication fails,

the packet is discarded; this is an auditable event.

Figure 16.4. Antireplay Mechanism

Integrity Check Value

 The Authentication Data field holds a value referred to as the Integrity Check Value.

The ICV is a message authentication code or a truncated version of a code produced by

a MAC algorithm. The current specification dictates that a compliant implementation

must support

o HMAC-MD5-96

o HMAC-SHA-1-96

 Both of these use the HMAC algorithm, the first with the MD5 hash code and the

second with the SHA-1 hash code

 In both cases, the full HMAC value is calculated but then truncated by using the first

96 bits, which is the default length for the Authentication Data field.

Transport and Tunnel Modes

 Figure 16.5 shows two ways in which the IPSec authentication service can be used. In

one case, authentication is provided directly between a server and client workstations;

the workstation can be either on the same network as the server or on an external

network.

 As long as the workstation and the server share a protected secret key, the authentication

process is secure. This case uses a transport mode SA.

 In the other case, a remote workstation authenticates itself to the corporate firewall,

either for access to the entire internal network or because the requested server does not

support the authentication feature. This case uses a tunnel mode SA.

 In this subsection, we look at the scope of authentication provided by AH and the

authentication header location for the two modes. The considerations are somewhat

different for IPv4 and IPv6. Figure 16.6a shows typical IPv4 and IPv6 packets.

 In this case, the IP payload is a TCP segment; it could also be a data unit for any other

protocol that uses IP, such as UDP or ICMP.

.

 For transport mode AH using IPv4, the AH is inserted after the original IP header and

before the IP payload (e.g., a TCP segment); this is shown in the upper part of Figure

16.6b. Authentication covers the entire packet, excluding mutable fields in the IPv4

header that are set to zero for MAC calculation

Figure 16.6. Scope of AH Authentication

Figure 16.5. End-to-End versus End-to-Intermediate Authentication

 In the context of IPv6, AH is viewed as an end-to-end payload; that is, it is not examined

or processedherefore, the AH appears after the IPv6 base header and the hop-by-hop,

routing, and fragment extension headers. The destination options extension header

could appear before or after the AH header, depending on the semantics desired. Again,

authentication covers the entire packet, excluding mutable fields that are set to zero for

MAC calculation.

 For tunnel mode AH, the entire original IP packet is authenticated, and the AH is

inserted between the original IP header and a new outer IP header (Figure 16.6c). The

inner IP header carries the ultimate source and destination addresses, while an outer IP

header may contain different IP addresses (e.g., addresses of firewalls or other security

gateways). With tunnel mode, the entire inner IP packet, including the entire inner IP

header is protected by AH.

 The outer IP header (and in the case of IPv6, the outer IP extension headers) is protected

except for mutable and unpredictable fields.

Encapsulating Security Payload (ESP)

Contents

Encapsulating Security Payload

 ESP Format

 Encryption and Authentication

Algorithms

 Padding

 Anti-Replay Service

 Transport and Tunnel Modes

Encapsulating Security Payload

 The Encapsulating Security Payload provides confidentiality services, including

confidentiality of message contents and limited traffic flow confidentiality. As an

optional feature, ESP can also provide an authentication service.

ESP Format

 Figure 16.7 shows the format of an ESP packet. It contains the following fields:

o Security Parameters Index (32 bits): Identifies a security association.

Sequence Number (32 bits): A monotonically increasing counter value; this

provides an antireplay function, as discussed for AH.

o Payload Data (variable): This is a transport-level segment (transport mode) or

IP packet (tunnel mode) that is protected by encryption.

o Padding (0255 bytes): The purpose of this field is discussed later.

o Pad Length (8 bits): Indicates the number of pad bytes immediately preceding

this field.

o Next Header (8 bits): Identifies the type of data contained in the payload data

field by identifying the first header in that payload (for example, an extension

header in IPv6, or an upper-layer protocol such as TCP).

o

o Authentication Data (variable): A variable-length field (must be an integral

number of 32-bit words) that contains the Integrity Check Value computed over the

ESP packet minus the Authentication Data field.

Encryption and Authentication Algorithms

 The Payload Data, Padding, Pad Length, and Next Header fields are encrypted by the

ESP service. If the algorithm used to encrypt the payload requires cryptographic

synchronization data, such as an initialization vector (IV), then these data may be

carried explicitly at the beginning of the Payload Datafield.

 If included, an IV is usually not encrypted, although it is often referred to as being part

of the ciphertext. The current specification dictates that a compliant implementation

must support DES in cipher block chaining (CBC) mode).

 A number of other algorithms have been assigned identifiers in the DOI document and

could therefore easily be used for encryption; these include

o Three-key triple DES

o RC5

o IDEA

o Three-key triple IDEA

o CAST

o Blowfish

 As with AH, ESP supports the use of a MAC with a default length of 96 bits. Also as

with AH, the current specification dictates that a compliant implementation must

support HMAC-MD5-96 and HMAC-SHA-1-96.

Padding

The Padding field serves several purposes:

 If an encryption algorithm requires the plaintext to be a multiple of some number of

bytes (e.g., the multiple of a single block for a block cipher), the Padding field is used

to expand the plaintext (consisting of the Payload Data, Padding, Pad Length, and

Next Header fields) to the required length.

 The ESP format requires that the Pad Length and Next Header fields be right aligned

within a 32- bit word. Equivalently, the ciphertext must be an integer multiple of 32

bits. The Padding field is used to assure this alignment.

 Additional padding may be added to provide partial traffic flow confidentiality by

concealing the actual length of the payload.

Transport and Tunnel Modes

 Figure 16.8 shows two ways in which the IPSec ESP service can be used. In the upper

part of the figure, encryption (and optionally authentication) is provided directly

between two hosts. Figure 16.8b shows how tunnel mode operation can be used to set

up a virtual private network.

 In this example, an organization has four private networks interconnected across the

Internet. Hosts on the internal networks use the Internet for transport of data but do not

interact with other Internet-based hosts.

 By terminating the tunnels at the security gateway to each internal network, the

configuration allows the hosts to avoid implementing the security capability. The

former technique is support by a transport mode SA, while the latter technique uses a

tunnel mode SA.

Transport Mode ESP

 Transport mode ESP is used to encrypt and optionally authenticate the data carried by

IP (e.g., a TCP segment), as shown in Figure 16.9a. For this mode using IPv4, the ESP

header is inserted into the IP packet immediately prior to the transport-layer header

(e.g., TCP, UDP, ICMP) and an ESP trailer (Padding, Pad Length, and Next Header

fields) is placed after the IP packet; if authentication is selected, the ESP Authentication

Data field is added after the ESP trailer.

 The entire transport-level segment plus the ESP trailer are encrypted. Authentication

covers all of the ciphertext plus the ESP header.

Figure 16.9. Scope of ESP Encryption and Authentication

 In the context of IPv6, ESP is viewed as an end-to-end payload; that is, it is not

examined or processed by intermediate routers. Therefore, the ESP header appears after

the IPv6 base header and the hop-byhop, routing, and fragment extension headers.

 The destination options extension header could appear before or after the ESP header,

depending on the semantics desired. For IPv6, encryption covers the entire transport-

level segment plus the ESP trailer plus the destination options extension header if it

occurs after the ESP header. Again, authentication covers the ciphertext plus the ESP

header.

Tunnel Mode ESP

 Tunnel mode ESP is used to encrypt an entire IP packet (Figure 16.9b). For this mode,

the ESP header is prefixed to the packet and then the packet plus the ESP trailer is

encrypted. This method can be used to counter traffic analysis. Because the IP header

contains the destination address and possibly source routing directives and hopby- hop

option information, it is not possible simply to transmit the encrypted IP packet prefixed

by the ESP header. Intermediate routers would be unable to process such a packet.

 Therefore, it is necessary to encapsulate the entire block (ESP header plus ciphertext

plus Authentication Data, if present) with a new IP header that will contain sufficient

information for routing but not for traffic analysis.Whereas the transport mode is

suitable for protecting connections between hosts that support the ESP feature, the

tunnel mode is useful in a configuration that includes a firewall or other sort of security

gateway that protects a trusted network from external networks. In this latter case,

encryption occurs only between an external host and the security gateway or between

two security gateways.

 This relieves hosts on the internal network of the processing burden of encryption and

simplifies the key distribution task by reducing the number of needed keys. Further, it

thwarts traffic analysis based on ultimate destination.

VARIOUS ASPECTS OF IPV6

 Contents

IPv6 (Internet Protocol Version 6)

o Advantages of IPv6:

o IPv6 Addresses

o CIDR Notation:

o IPv6 Packet Format:

IPv6 (Internet Protocol Version 6)

 IPv6 is the next generation Internet Protocol designed as a successor to the IP version

4.

 IPv6 was designed to enable high-performance, scalable Internet.

 This was achieved by overcoming many of the weaknesses of IPv4 protocol and by

adding several new features.

 Advantages of IPv6:

1. Larger address space

 IPv6 has 128-bit address space, which is 4 times wider in bits in compared to IPv4’s

32-bit address space.

 So there is a huge increase in the address space.

2. Better header forma

 IPv6 uses a better header format. In its header format the options are separated

from the base header.

 The options are inserted when needed, between the base header and upper layer

data.

 The helps in speeding up the routing process.

3. New option

 New options have been added in IPv6 to increase the functionality.

4. Possibility of extension

 IPv6 has been designed in such a way that there is a possibility of extension of

protocol if required.

5. More security

 IPv6 includes security in the basic specification.

 It includes encryption of packets (ESP: Encapsulated Security Payload) and

authentication of the sender of packets (AH: Authentication Header).

6. Support to resource allocation

 To implement better support for real time traffic (such as video conference), IPv6

includes flow label in the specification.

 With flow label mechanism, routers can recognize to which end-to-end flow the

packets belongs.

7. Plug and play

 IPv6 includes plug and play in the standard specification.

 It therefore must be easier for novice users to connect their machines to the network,

it will be done automatically.

8. Clearer specification and optimization

 IPv6 follows good practices of IPv4, and rejects minor flaws/obsolete items of IPv4.

IPv6 Addresses

An IPv6 addresses consists of 16 bytes (octets) i.e. it is 128 bits long as shown in the

below figure.

Hexadecimal colon notation:

 IPv6 uses a special notation called hexadecimal colon notation. In this, the 128 bits are

divided into 8 sections; each one is 2 bytes long.

 2 bytes correspond to 16 bits. So in hexadecimal notation will require four hexadecimal

digits.

 Hence the IPv6 address consists of 32 hex digits and every group of 4 digits is separated

by a colon as shown in the above figure.

 IPv6 uses 128-bit addresses. Only about 15% of the address space is initially allocated,

the remaining 85% being reserved for future use.

 This remainder may be used in the future for expanding the address spaces of existing

address types or for totally new uses.

Abbreviation:

 The IPv6 address, even in hexadecimal format is very long. But in this address

there are many of the zero digits in it.

 In such a case, we can abbreviate the address. The leading zeros of a section (four

digits between two colons) can be omitted.

 Note that oOnly the leading zeros can be dropped but the trailing zeros can not drop.

This is illustrated in the below figure.

Further abbreviation:

 Further abbreviations are possible if there is consecutive section consisting of only

zeros.

 We can remove the zeros completely and replace them with double semicolon as

shown in the below figure.

 It is important to note abbreviation is allowed only once per address. Also note that if

there are two runs of zero sections, then only one of them can be abbreviated.

CIDR Notation:

 IPv6 protocol allows classless addressing and CIDR notation.

 The below figure shows how to define a prefix of 60 bits using CIDR.

 Categories of Address:

IPv6 defines three different types of addresses.

Unicast

 A unicast address defines a single computer.

 A packet sent to a unicast address is delivered to that specific computer.

Anycast

 This is a type of address defines a group of computers with addresses which have the

same prefix.

 A packet sent to an anycast address must be delivered to exactly one of the members of

the group which is the closest or the most easily accessible.

Multicast Addresses:

 A multicast address defines a group of computers which may or may not share the same

prefix and may or may not be connected to the same physical network.

 A packet sent to a multicast address must be delivered to each member of the set.

 There are no broadcast addresses in IPv6, because multicast addresses can perform the

same function. The type of address is determined by the leading bits.

 Multicast addresses all start with FF (1111 1111) and all other addresses are unicast

addresses.

 Anycast addresses are assigned from the unicast address space and they do not differ

syntactically from unicast addresses.

 Anycast addressing is a rather new concept and there is little experience with the

widespread use of anycast addresses.

 Therefore, some restrictions apply to anycast addressing in IPv6 until more experience

is gained.

 An anycast address may not be used as the Source Address of an IPv6 packet and

anycast addresses may not be assigned to hosts but to routers only.

IPv6 Packet Format:

 The IPv6 packet is shown in the below figure. Each packet consists of a base header

which is mandatory followed by the payload.

 The payload is made up of two parts

o Optional extension headers and

o Data from an upper layer

 The base header is 40 byte length whereas the extension header and the data from

upper layer contain upto 65,535 bytes of information.

 Base header

In the base header have eight fields.

These fields are as follows:

1) Version (VER): It is a 4 bit field which defines the version of IP such as IPv4 or IPv6.

For IPv6 the value of this field is 6.

2) Priority: It is a 4 bit field which defines the priority of the packet which is important

in connection with the traffic congestion.

3) Flow label: It is a 24 bit (3 byte) field which is designed for providing special handling

for a particular flow of data.

4) Payload length: This is a 2 byte length field which is used to define the total length of

the IP datagram excluding the base header.

5) Next header: It is an 8 bit field which defines the header which follows the base header

in the datagram.

6) Hop limit: This is an 8 bit field which has the same purpose as TTL in IPv4.

7) Source address: It is a 16 byte (128) Internet address which identifies the original

source of datagram.

8) Destination address: This is a 16 byte (128) internet address which identifies the final

destination of datagram. But this field will contain the address of the next router if

source routing is being used.

KEY MANAGEMENT OF IPSEC OR INTERNET KEY EXCHANGE

PROTOCOL

Contents

Internet Key Exchange

 Key Determination Protocol

 Header and Payload Formats

Internet Key Exchange

 The key management portion of IPsec involves the determination and distribution of

secret keys. A typical requirement is four keys for communication between two

applications: transmit and receive pairs for both integrity and confidentiality.

 The IPsec Architecture document mandates support for two types of key

management:
o Manual: A system administrator manually configures each system with its own

keys and with the keys of other communicating systems. This is practical for small,

relatively static environments.

o Automated: An automated system enables the on-demand creation of keys for SAs

and facilitates the use of keys in a large distributed system with an evolving

configuration.

o The default automated key management protocol for IPsec is referred to as

ISAKMP/Oakley and consists of the following elements:

 Oakley Key Determination Protocol:
 Oakley is a key exchange protocol based on the Diffie-Hellman

algorithm but providing added security. Oakley is generic in that it does

not dictate specific formats.

 Internet Security Association and Key Management Protocol

(ISAKMP):

 ISAKMP provides a framework for Internet key management and

provides the specific protocol support, including formats, for negotiation

of security attributes.

 ISAKMP by itself does not dictate a specific key exchange algorithm;

rather, ISAKMP consists of a set of message types that enable the use

of a variety of key exchange algorithms. Oakley is the specific key

exchange algorithm mandated for use with the initial version of

ISAKMP.

 In IKEv2, the terms Oakley and ISAKMP are no longer used, and there

are significant differences from the use of Oakley and ISAKMP in

IKEv1. Nevertheless, the basic functionality is the same. In this section,

we describe the IKEv2 specification.

Key Determination Protocol

 IKE key determination is a refinement of the Diffie-Hellman key exchange algorithm.

Recall that Diffie-Hellman involves the following interaction between users A and B.

 There is prior agreement on two global parameters: q, a large prime number; and a, a

primitive root of q. A selects a random integer XA as its private key and transmits to B

its public key _A = aXA mod q. Similarly, B selects a random integer XB as its private

key and transmits to A its public key _B = aXB mod q. Each side can now compute the

secret session key:

The Diffie-Hellman algorithm has two attractive features:

 Secret keys are created only when needed. There is no need to store secret keys for a

long period of time, exposing them to increased vulnerability.

 The exchange requires no pre-existing infrastructure other than an agreement on the

global parameters. However, there are a number of weaknesses to Diffie-Hellman, as

pointed out in [HUIT98]. • It does not provide any information about the identities of

the parties.

 It is subject to a man-in-the-middle attack, in which a third party C impersonates B

while communicating with A and impersonates A while communicating with B. Both

A and B end up negotiating a key with C, which can then listen to and pass on traffic.

The man-in-the-middle attack proceeds as

1. B sends his public key YB in a message addressed to A (see Figure 10.2).

2. The enemy (E) intercepts this message. E saves B’s public key and sends a

message to A that has B’s User ID but E’s public key YE. This message is sent

in such a way that it appears as though it was sent from B’s host system. A

receives E’s message and stores E’s public key with B’s User ID. Similarly, E

sends a message to B with E’s public key, purporting to come

3. from A.

4. B computes a secret key K1 based on B’s private key and YE. A computes a

secret key K2 based on A’s private key and YE. E computes K1 using E’s secret

key XE and YB and computers K2 using XE and YA.

5. From now on, E is able to relay messages from A to B and from B to A,

appropriately changing their encipherment en route in such a way that neither

A nor B will know that they share their communication with E.

 It is computationally intensive. As a result, it is vulnerable to a clogging attack, in which

an opponent requests a high number of keys. The victim spends considerable computing

resources doing useless modular exponentiation rather than real work.

 IKE key determination is designed to retain the advantages of Diffie-Hellman, while

countering its weaknesses.

Features of IKE key determination

 The IKE key determination algorithm is characterized by five important features:

 .It employs a mechanism known as cookies to thwart clogging attacks.

 It enables the two parties to negotiate a group; this, in essence, specifies the global

parameters of the Diffie-Hellman key exchange.

 It uses nonces to ensure against replay attacks.

 It enables the exchange of Diffie-Hellman public key values.. It authenticates the

Diffie-Hellman exchange to thwart man-in-the-middle attacks.

 IKE mandates that cookie generation satisfy three basic requirements:

 The cookie must depend on the specific parties. This prevents an attacker from

obtaining a cookie using a real IP address and UDP port and then using it to swamp

the victim with requests from randomly chosen IP addresses or ports.

 It must not be possible for anyone other than the issuing entity to generate cookies

that will be accepted by that entity. This implies that the issuing entity will use local

secret information in the generation and subsequent verification of a cookie. It must

not be possible to deduce this secret information from any particular cookie. The

point of this requirement is that the issuing entity need not save copies of its cookies,

which are then more vulnerable to discovery, but can verify an incoming cookie

acknowledgment when it needs to.

 The cookie generation and verification methods must be fast to thwart attacks

intended to sabotage processor resources.

 IKE key determination employs nonces to ensure against replay attacks. Each nonce is

a locally generated pseudorandom number. Nonces appear in responses and are

encrypted during certain portions of the exchange to secure their use.

 Three different authentication methods can be used with IKE key determination:

o Digital signatures: The exchange is authenticated by signing a mutually obtainable

hash; each party encrypts the hash with its private key. The hash is generated over

important parameters, such as user IDs and nonces.

o Public-key encryption: The exchange is authenticated by encrypting parameters

such as IDs and nonces with the sender’s private key.

o Symmetric-key encryption: A key derived by some out-of-band mechanism can

be used to authenticate the exchange by symmetric encryption of exchange

parameters.

Header and Payload Formats

 IKE defines procedures and packet formats to establish, negotiate, modify, and delete

security associations. As part of SA establishment, IKE defines payloads for

exchanging key generation and authentication data.

 These payload formats provide a consistent framework independent of the specific key

exchange protocol, encryption algorithm, and authentication mechanism.

1. IKE Header Format

 An IKE message consists of an IKE header followed by one or more payloads

 .All of this is carried in a transport protocol. The specification dictates that

implementations must support the use of UDP for the transport protocol.

 Figure 20.12a shows the header format for an IKE message. It consists of the following

fields.

o Initiator SPI (64 bits): A value chosen by the initiator to identify a unique IKE

security association (SA).

o Responder SPI (64 bits): A value chosen by the responder to identify a unique IKE

SA.

o Next Payload (8 bits): Indicates the type of the first payload in the message;

payloads are discussed in the next subsection.

o Major Version (4 bits): Indicates major version of IKE in use.

o Minor Version (4 bits): Indicates minor version in use.

o Exchange Type (8 bits): Indicates the type of exchange

o Flags (8 bits): Indicates specific options set for this IKE exchange. Three bits are

defined so far. The initiator bit indicates whether this packet is sent by the SA

initiator. The version bit indicates whether the transmitter is capable of using a

higher major version number than the one currently indicated. The response bit

indicates whether this is a response to a message containing the same message ID.

o Message ID (32 bits): Used to control retransmission of lost packets and matching

of requests and responses.

o Length (32 bits): Length of total message (header plus all payloads) in octets.

2. IKE Payload Types

 All IKE payloads begin with the same generic payload header shown in Figure 20.12b.

The Next Payload field has a value of 0 if this is the last payload in the message;

otherwise its value is the type of the next payload. The Payload Length field indicates

the length in octets of this payload, including the generic payload header.

 The critical bit is 0 if the sender wants the recipient to skip this payload if it does not

understand the payload type code in the Next Payload field of the previous payload. It

is set to 1 if the sender wants the recipient to reject this entire message if it does not

understand the payload type.

 These elements are formatted as substructures within the payload as follows.

o Proposal: This substructure includes a proposal number, a protocol ID (AH, ESP,

or IKE), an indicator of the number of transforms, and then a transform

substructure. If more than one protocol is to be included in a proposal, then there is

a subsequent proposal substructure with the same proposal number.

o Transform: Different protocols support different transform types. The transforms

are used primarily to define cryptographic algorithms to be used with a particular

protocol.

o Attribute: Each transform may include attributes that modify or complete the

specification of the transform. An example is key length.

o
 The Key Exchange payload can be used for a variety of key exchange techniques,

including Oakley, Diffie-Hellman, and the RSA-based key exchange used by PGP. The

Key Exchange data field contains the data required to generate a session key and is

dependent on the key exchange algorithm used.

 The Identification payload is used to determine the identity of communicating peers

and may be used for determining authenticity of information. Typically the ID Data

field will contain an IPv4 or IPv6 address.

 The Certificate payload transfers a public-key certificate. The Certificate Encoding

field indicates the type of certificate or certificate-related information, which may

include the following:

• PKCS #7 wrapped X.509 certificate

• PGP certificate

• DNS signed key

• X.509 certificate—signature

• X.509 certificate—key exchange

• Kerberos tokens

• Certificate Revocation List (CRL)

• Authority Revocation List (ARL)

• SPKI certificate

 At any point in an IKE exchange, the sender may include a Certificate Request

payload to request the certificate of the other communicating entity. The payload may

list more than one certificate type that is acceptable and more than one certificate

authority that is acceptable.

 The Authentication payload contains data used for message authentication purposes.

The authentication method types so far defined are RSA digital signature, shared-key

message integrity code, and DSS digital signature.

 The Nonce payload contains random data used to guarantee liveness during an

exchange and to protect against replay attacks.

 The Notify payload contains either error or status information associated with this SA

or this SA negotiation. The following table lists the IKE notify messages.

 The Delete payload indicates one or more SAs that the sender has deleted from its

database and that therefore are no longer valid.

 The Vendor ID payload contains a vendor-defined constant. The constant is used by

vendors to identify and recognize remote instances of their implementations. This

mechanism allows a vendor to experiment with new features while maintaining

backward compatibility.

 The Traffic Selector payload allows peers to identify packet flows for processing by

IPsec services.

 The Encrypted payload contains other payloads in encrypted form. The encrypted

payload format is similar to that of ESP. It may include an IV if the encryption

algorithm requires it and an ICV if authentication is selected.

 The Configuration payload is used to exchange configuration information between

IKE peers.

 The Extensible Authentication Protocol (EAP) payload allows IKE SAs to be

authenticated using EAP,

5.3. WEB SECURITY

Contents

Web Security

 Web Security Considerations

Web Security Threats

Web Traffic Security Approaches

Secure Socket Layer and Transport Layer

Security

SSL Architecture

SSL Record Protocol

Change Cipher Spec Protocol

Alert Protocol

Handshake Protocol

Cryptographic Computations

Transport Layer Security

 Secure Electronic Transaction

SET Overview

Dual Signature

Payment Processing

Web Security Considerations

 The World Wide Web is fundamentally a client/server application running over the

Internet and TCP/IP intranets.

 As such, the security tools and approaches discussed so far in this book are relevant

to the issue of Web security.

 But, as pointed out in [GARF97], the Web presents new challenges not generally

appreciated in the context of computer and network security:

 The Internet is two way. Unlike traditional publishing environments, even electronic

publishing systems involving tele text, voice response, or fax-back, the Web is

vulnerable to attacks on the Web servers over the Internet.

 The Web is increasingly serving as a highly visible outlet for corporate and product

information and as the platform for business transactions.

 Reputations can be damaged and money can be lost if the Web servers are subverted.

Web Security Threats

 Table 17.1 provides a summary of the types of security threats faced in using the Web.

One way to group these threats is in terms of passive and active attacks.

 Passive attacks include eavesdropping on network traffic between browser and server

and gaining access to information on a Web site that is supposed to be restricted.

 Active attacks include impersonating another user, altering messages in transit

between client and server, and altering information on a Web site.

Web Traffic Security Approaches

 A number of approaches to providing Web security are possible. The various

approaches that have been considered are similar in the services they provide and, to

some extent, in the mechanisms that they use, but they differ with respect to their

scope of applicability and their relative location within the TCP/IP protocol stack.

 The advantage of using IPSec is that it is transparent to end users and applications

and provides a general-purpose solution. Further, IPSec includes a filtering capability

so that only selected traffic need incur the overhead of IPSec processing.

Table 17.1. A Comparison of Threats on the Web

SECURE SOCKET LAYER SECURITY(SSL)

Contents

 Secure Socket Layer Security

o SSL Architecture

o SSL Record Protocol

o Change Cipher Spec Protocol

o Alert Protocol

o Handshake Protocol

o Cryptographic Computations

 Transport Layer Security

Secure Socket Layer

 SSL protocol is an internet protocol for secure exchange of information between a

web browser and web server

 SSL is Designed to make use of TCP to provide a reliable end to end secure service

 SSL provides security services between TCP and applications that use TCP. The SSL

protocol is an internet protocol for secure exchange of information between a web

browser and web server

 Subsequently, when a consensus was reached to submit the protocol for Internet

standardization, the TLS working group was formed within IETF to develop a

common standard. This first published version of TLS can be viewed as essentially

an SSLv3.1 and is very close to and backward compatible with SSLv3.

 The bulk of this section is devoted to a discussion of SSLv3. At the end of the section,

the principal differences between SSLv3 and TLS are described.

SSL Architecture

 SSL is designed to make use of TCP to provide a reliable end-to-end secure service.

SSL is not a single protocol but rather two layers of protocols, as illustrated in Figure

17.2.

 The SSL Record Protocol provides basic security services to various higher-layer

protocols. In particular, the Hypertext Transfer Protocol (HTTP), which provides the

transfer service for Web client/server interaction, can operate on top of SSL. Three

higher-layer protocols are defined as part of SSL:

 The Handshake Protocol, The Change Cipher Spec Protocol, and the Alert Protocol.

Figure 17.2. SSL Protocol Stack

 Two important SSL concepts are the SSL session and the SSL connection, which

are defined in the specification as follows:

o Connection: A connection is a transport (in the OSI layering model definition)

that provides a suitable type of service. For SSL, such connections are peer-to-

peer relationships. The connections are transient. Every connection is associated

with one session.

o Session: An SSL session is an association between a client and a server.

Sessions are created by the Handshake Protocol. Sessions define a set of

cryptographic security parameters, which can be shared among multiple

connections.

 Sessions are used to avoid the expensive negotiation of new security parameters for

each connection. Between any pair of parties (applications such as HTTP on client

and server), there may be multiple secure connections.

 In theory, there may also be multiple simultaneous sessions between parties, but this

feature is not used in practice.

 There are actually a number of states associated with each session.

 Once a session is established, there is a current operating state for both read and write

(i.e., receive and send). In addition, during the Handshake Protocol, pending read and

write states are created.

 Upon successful conclusion of the Handshake Protocol, the pending states become

the current states. A session state is defined by the following parameters (definitions

taken from the SSL specification):

o Session identifier: An arbitrary byte sequence chosen by the server to

identify an active or resumable session state.

o Peer certificate: An X509.v3 certificate of the peer. This element of the state

may be null.

o Compression method: The algorithm used to compress data prior to

encryption.

o Cipher spec: Specifies the bulk data encryption algorithm (such as null, AES,

etc.) and a hash algorithm (such as MD5 or SHA-1) used for MAC

calculation. It also defines cryptographic attributes such as the hash size.

o Master secret: 48-byte secret shared between the client and server.

o Is resumable: A flag indicating whether the session can be used to initiate

new connections.

 A connection state is defined by the following parameters:

o Server and client random: Byte sequences that are chosen by the server and

client for each connection.

o Server write MAC secret: The secret key used in MAC operations on data

sent by the server.

o Client write MAC secret: The secret key used in MAC operations on data

sent by the client.

o Server write key: The conventional encryption key for data encrypted by the

server and decrypted by the client.

o Client write key: The conventional encryption key for data encrypted by the

client and decrypted by the server.

o Initialization vectors: When a block cipher in CBC mode is used, an

initialization vector (IV) is maintained for each key. This field is first

initialized by the SSL Handshake Protocol. Thereafter the final ciphertext

block from each record is preserved for use as the IV with the following

record.

o Sequence numbers: Each party maintains separate sequence numbers for

transmitted and received messages for each connection. When a party sends

or receives a change cipher spec message, the appropriate sequence number

is set to zero. Sequence numbers may not exceed 264

o Confidentiality: The Handshake Protocol defines a shared secret key that is

used for conventional encryption of SSL payloads.

o Message Integrity: The Handshake Protocol also defines a shared secret key

that is used to form a message authentication code (MAC).

 SSL components:

o SSL Record Protocol

o SSL Handshake Protocol

o SSL Alert Protocol

o SSL Change Cipher Spec Protocol

SSL Record Protocol

 The SSL Record Protocol provides two services for SSL connections:

o Confidentiality: The Handshake Protocol defines a shared secret key that is

used for conventional encryption of SSL payloads.

o Message Integrity: The Handshake Protocol also defines a shared secret key

that is used to form a message authentication code (MAC).

Figure 17.3. SSL Record Protocol Operation

 Figure 17.3 indicates the overall operation of the SSL Record Protocol. The Record

Protocol takes an application message to be transmitted, fragments the data into

manageable blocks, optionally compresses the data, applies a MAC, encrypts, adds a

header, and transmits the resulting unit in a TCP segment.

 Received data are decrypted, verified, decompressed, and reassembled and then

delivered to higher-level users.

 The first step is fragmentation. Each upper-layer message is fragmented into blocks

of 214 bytes (16384 bytes) or less.

 Next, compression is optionally applied. Compression must be lossless and may not

increase the content length by more than 1024 bytes. In SSLv3 (as well as the current

version of TLS), no compression algorithm is specified, so the default compression

algorithm is null.

 The next step in processing is to compute a message authentication code over the

compressed data. For this purpose, a shared secret key is used. The calculation is

defined as

hash(MAC_write_secret || pad_2 ||

hash(MAC_write_secret || pad_1 || seq_num ||

SSLCompressed.type ||

SSLCompressed.length || SSLCompressed.fragment))

Where

|| = concatenation

MAC_write_secret = shared secret key

hash = cryptographic hash algorithm; either MD5 or SHA-1

pad_1 = the byte 0x36 (0011 0110) repeated 48 times (384 bits) for MD5 and

40 times (320 bits) for SHA-1

pad_2 = the byte 0x5C (0101 1100) repeated 48 times for MD5 and 40 times

for

SHA-1

seq_num = the sequence number for this message

SSLCompressed.type = the higher-level protocol used to process this fragment

SSLCompressed.length = the length of the compressed fragment

SSLCompressed.fragment = the compressed fragment (if compression is not

used, the plaintext Fragment

 Next, the compressed message plus the MAC are encrypted using symmetric

encryption. Encryption may not increase the content length by more than 1024 bytes,

so that the total length may not exceed 214 + 2048.

 The final step of SSL Record Protocol processing is to prepend a header, consisting of

the following fields:

o Content Type (8 bits): The higher layer protocol used to process the enclosed

fragment.

o Major Version (8 bits): Indicates major version of SSL in use. For SSLv3, the

value is 3.

o Minor Version (8 bits): Indicates minor version in use. For SSLv3, the value

is 0.

o Compressed Length (16 bits): The length in bytes of the plaintext fragment

(or compressed

o fragment if compression is used). The maximum value is 214 + 2048.

Figure 17.4 illustrates the SSL record format.

Change Cipher Spec Protocol

 The Change Cipher Spec Protocol is one of the three SSL-specific protocols that use

the SSL Record Protocol, and it is the simplest. This protocol consists of a single

message (Figure 17.5a), which consists of a single byte with the value 1.

 The sole purpose of this message is to cause the pending state to be copied into the

current state, which updates the cipher suite to be used on this connection.

Figure 17.5. SSL Record Protocol Payload

Alert Protocol

 The Alert Protocol is used to convey SSL-related alerts to the peer entity. As with

other applications that use SSL, alert messages are compressed and encrypted, as

specified by the current state.

 Each message in this protocol consists of two bytes (Figure 17.5b). The first byte

takes the value warning(1) or fatal(2) to convey the severity of the message.

 If the level is fatal, SSL immediately terminates the connection. Other connections

on the same session may continue, but no new connections on this session may be

established. The second byte contains a code that indicates the specific alert.

 First, we list those alerts that are always fatal (definitions from the SSL specification):

o Unexpected message: An inappropriate message was received.

o bad_record_mac: An incorrect MAC was received.

o Decompression failure: The decompression function received improper

input (e.g., unable to decompress or decompress to greater than maximum

allowable length).

o handshake failure: Sender was unable to negotiate an acceptable set of

security parameters given the options available.

o illegal parameter: A field in a handshake message was out of range or

inconsistent with other fields.

 The remainder of the alerts is the following:

o close notify: Notifies the recipient that the sender will not send any more

messages on this connection. Each party is required to send a close_notify

alert before closing the write side of a connection.

o no certificate: May be sent in response to a certificate request if no

appropriate certificate is available.

o bad certificate: A received certificate was corrupt (e.g., contained a signature

that did not verify).

o unsupported certificate: The type of the received certificate is not supported.

o certificate revoked: A certificate has been revoked by its signer.

o certificate expired: A certificate has expired.

o certificate unknown: Some other unspecified issue arose in processing the

certificate, rendering it unacceptable.

Handshake Protocol

 The most complex part of SSL is the Handshake Protocol. This protocol allows the

server and client to authenticate each other and to negotiate an encryption and MAC

algorithm and cryptographic keys to be used to protect data sent in an SSL record.

 The Handshake Protocol is used before any application data is transmitted.

 Each message has three fields:

o Type (1 byte): Indicates one of 10 messages. Table 17.2 lists the defined

message types.

o Length (3 bytes): The length of the message in bytes.

o Content (0 bytes): The parameters associated with this message; these are

listed in Table17.2.

Figure 17.6. Handshake Protocol Action

Cryptographic Computations

 Two further items are of interest: the creation of a shared master secret by means of the

key exchange, and the generation of cryptographic parameters from the master secret.

Master Secret Creation

 The shared master secret is a one-time 48-byte value (384 bits) generated for this

session by means of secure key exchange. The creation is in two stages. First, a

pre_master_secret is exchanged.

 Second, the master_secret is calculated by both parties. For pre_master_secret

exchange, there are two possibilities:

o RSA: A 48-byte pre_master_secret is generated by the client, encrypted with

the server's public RSA key, and sent to the server. The server decrypts the

ciphertext using its private key to recover the pre_master_secret.

o Diffie-Hellman: Both client and server generate a Diffie-Hellman public key.

After these are exchanged, each side performs the Diffie-Hellman calculation

to create the shared pre_master_secret.

Both sides now compute the master_secret as follows:

master_secret = MD5(pre_master_secret || SHA('A' ||

pre_master_secret ||ClientHello.random ||

ServerHello.random)) ||

MD5(pre_master_secret || SHA('BB' ||

pre_master_secret || ClientHello.random ||

ServerHello.random)) ||

MD5(pre_master_secret || SHA('CCC' ||

pre_master_secret || ClientHello.random ||

ServerHello.random))

 where ClientHello.random and ServerHello.random are the two nonce values

exchanged in the initial hello messages

Transport Layer Security(TLS)

 TLS is an IETF standardization initiative whose goal is to produce an Internet standard

version of SSL.

 TLS is defined as a Proposed Internet Standard in RFC 2246. RFC 2246 is very similar

to SSLv3. In this section, we highlight the differences.

Version Number

 The TLS Record Format is the same as that of the SSL Record Format (Figure 17.4),

and the fields in the header have the same meanings. The one difference is in version

values. For the current version of TLS, the Major Version is 3 and the Minor Version

is 1.

Message Authentication Code

 There are two differences between the SSLv3 and TLS MAC schemes: the actual

algorithm and the scope of the MAC calculation. TLS makes use of the HMAC

algorithm defined in RFC 2104.

 HMAC is defined as follows:

HMACK(M) = H[(K+ opad)||H[(K+ ipad)||M]]

Where

H = embedded hash function (for TLS, either MD5 or SHA-1)

M = message input to HMAC

K+ = secret key padded with zeros on the left so that the result is equal to the block

length of the hash code(for MD5 and SHA-1, block length = 512 bits)

ipad = 00110110 (36 in hexadecimal) repeated 64 times (512 bits)

opad = 01011100 (5C in hexadecimal) repeated 64 times (512 bits)

 SSLv3 uses the same algorithm, except that the padding bytes are concatenated with

the secret key rather than being XORed with the secret key padded to the block length.

The level of security should be about the same in both cases.

 For TLS, the MAC calculation encompasses the fields indicated in the following

expression:

HMAC_hash(MAC_write_secret, seq_num || TLSCompressed.type ||

TLSCompressed.version || TLSCompressed.length ||

TLSCompressed.fragment)

 The MAC calculation covers all of the fields covered by the SSLv3 calculation, plus

the field

 TLSCompressed.version, which is the version of the protocol being employed.

Pseudorandom Function

 TLS makes use of a pseudorandom function referred to as PRF to expand secrets into

blocks of data for purposes of key generation or validation.

 The objective is to make use of a relatively small shared secret value but to generate

longer blocks of data in a way that is secure from the kinds of attacks made on hash

functions and MACs.The PRF is based on the data expansion function (Figure 16.7)

given as

P_hash(secret, seed)= HMAC_hash(secret,A(1) || seed) ||

HMAC_hash(secret, A(2) || seed) ||

HMAC_hash(secret, A(3) || seed) || . . .

where

A() is defined as

A(0) = seed

A(i) = HMAC_hash(secret,A(i – 1))

Alert Codes

 TLS supports all of the alert codes defined in SSLv3 with the exception of

no_certificate.A number of additional codes are defined in TLS; of these, the following

are always fatal.

o record_overflow: A TLS record was received with a payload (ciphertext)

whose length exceeds bytes, or the ciphertext decrypted to a length of greater

than bytes.

o unknown_ca: A valid certificate chain or partial chain was received, but the

certificate was not accepted because the CA certificate could not be located or

could not be matched with a known, trusted CA.

o access_denied: A valid certificate was received, but when access control was

applied, the sender decided not to proceed with the negotiation.

o decode_error: A message could not be decoded, because either a field was out

of its specified range or the length of the message was incorrect.

o protocol_version: The protocol version the client attempted to negotiate is

recognized but not supported.

o insufficient_security: Returned instead of handshake failure when a

negotiation has failed specifically because the server requires ciphers more

secure than those supported by the client.

o unsupported_extension: Sent by clients that receive an extended server hello

containing an extension not in the corresponding client hello.

o internal_error: An internal error unrelated to the peer or the correctness of the

protocol makes it impossible to continue.

o decrypt_error: A handshake cryptographic operation failed, including being

unable to verify a signature, decrypt a key exchange, or validate a finished

message.

 The remaining alerts include the following.

o user_canceled: This handshake is being canceled for some reason unrelated to a

protocol failure.

o no_renegotiation: Sent by a client in response to a hello request or by the server in

response to a client hello after initial handshaking. Either of these messages would

normally result in renegotiation, but this alert indicates that the sender is not able to

renegotiate.This message is always a warning.

Cipher Suites

 There are several small differences between the cipher suites available under SSLv3

and under TLS:

o Key Exchange: TLS supports all of the key exchange techniques of SSLv3 with

the exception of Fortezza.

o Symmetric Encryption Algorithms: TLS includes all of the symmetric encryption

algorithms found in SSLv3, with the exception of Fortezza

5.4. SYSTEM SECURITY

5.4.1. INTRUDERS

Contents

 Intruder

 Masquerader:
 Misfeasor:

 Clandestine user:

 Intruder Behavior Patterns

 Hackers
 Criminals
 Insider Attacks

 Intrusion Techniques

 One-way function:
 Access control:

Intruder

One of the two most publicized threats to security is the intruder, often referred to as a hacker

or cracker.

 The identified three classes of intruders:

• Masquerader: An individual who is not authorized to use the computer and who

penetrates a system’s access controls to exploit a legitimate user’s account

• Misfeasor: A legitimate user who accesses data, programs, or resources for which

such access is not authorized, or who is authorized for such access but misuses his or

her privileges

• Clandestine user: An individual who seizes supervisory control of the system and

uses this control to evade auditing and access controls or to suppress audit collection.

 The masquerader is likely to be an outsider; the misfeasor generally is an insider; and

the clandestine user can be either an outsider or an insider.

The following are examples of intrusion:

• Performing a remote root compromise of an e-mail server

• Defacing a Web server

• Guessing and cracking passwords

• Copying a database containing credit card numbers

• Viewing sensitive data, including payroll records and medical information,

without authorization

• Running a packet sniffer on a workstation to capture usernames and passwords

• Using a permission error on an anonymous FTP server to distribute pirated

software and music files

• Dialing into an unsecured modem and gaining internal network access

• Posing as an executive, calling the help desk, resetting the executive’s e-mail

password, and learning the new password

• Using an unattended, logged-in workstation without permission.

Intruder Behavior Patterns:

The three broad examples of intruder behavior patterns are

 Hackers Traditionally, those who hack into computers do so for the thrill of it or for status.

The hacking community is a strong meritocracy in which status is determined by level of

competence.

 Criminals Organized groups of hackers have become a widespread and common threat to

Internet-based systems. These groups can be in the employ of a corporation or government

but often are loosely affiliated gangs of hackers.

 Insider Attacks Insider attacks are among the most difficult to detect and prevent.

Employees already have access and knowledge about the structure and content of corporate

databases. Insider attacks can be motivated by revenge or simply a feeling of entitlement.

Intrusion Techniques:

The password file can be protected in one of two ways:

• One-way function: The system stores only the value of a function based on the user’s

password. When the user presents a password, the system transforms that password and

compares it with the stored value.

• Access control: Access to the password file is limited to one or a very few accounts.

The techniques for learning passwords:

1. Try default passwords used with standard accounts that are shipped with the system.

Many administrators do not bother to change these defaults.

2. Exhaustively try all short passwords (those of one to three characters).

3. Try words in the system’s online dictionary or a list of likely passwords. Examples

of the latter are readily available on hacker bulletin boards.

4. Collect information about users, such as their full names, the names of their spouse

and children, pictures in their office, and books in their office that are related to hobbies.

5. Try users’ phone numbers, Social Security numbers, and room numbers.

6. Try all legitimate license plate numbers for this state.

7. Use a Trojan horse to bypass restrictions on access.

8. Tap the line between a remote user and the host system.

Contents

 Intrusion detection system

 Statistical anomaly detection
 Threshold detection
 Profile based

 Rule-based detection
 Anomaly detection
 Penetration identification

 Audit Records

 Native audit records

 Detection-specific audit records:

 The Base-Rate Fallacy

 Distributed Intrusion Detection

 Host agent module

 LAN monitor agent module
 Central manager module

 Honeypots

 Intrusion Detection Exchange Format

Intrusion detection system:

1. If an intrusion is detected quickly enough, the intruder can be identified and ejected

from the system before any damage is done or any data are compromised.

2. An effective intrusion detection system can serve as a deterrent, so acting to prevent

intrusions.

3. Intrusion detection enables the collection of information about intrusion techniques

that can be used to strengthen the intrusion prevention facility.

The following approaches to intrusion detection:

1. Statistical anomaly detection: Involves the collection of data relating to the

behavior of legitimate users over a period of time.

a. Threshold detection: This approach involves defining thresholds,

independent of user, for the frequency of occurrence of various events.

b. Profile based: A profile of the activity of each user is developed and used to

detect changes in the behavior of individual accounts.

2. Rule-based detection: Involves an attempt to define a set of rules that can be used

to decide that a given behavior is that of an intruder.

a. Anomaly detection: Rules are developed to detect deviation from previous

usage patterns.

b. Penetration identification: An expert system approach that searches for

suspicious behavior.

Audit Records

 A fundamental tool for intrusion detection is the audit record. Some record of ongoing

activity by users must be maintained as input to an intrusion detection system.

Basically, two plans are used:

• Native audit records: Virtually all multiuser operating systems include accounting

software that collects information on user activity.

• Detection-specific audit records: A collection facility can be implemented that

generates audit records containing only that information required by the intrusion

detection system.

Each audit record contains the following fields:

• Subject: Initiators of actions.

• Action: Operation performed by the subject on or with an object.

• Object: Receptors of actions.

• Exception-Condition: Denotes which, if any, exception condition is raised on return.

• Resource-Usage: A list of quantitative elements in which each element gives the

amount used of some resource.

• Time-Stamp: Unique time-and-date stamp identifying when the action took place.

Statistical Anomaly Detection:

Statistical anomaly detection techniques fall into two broad categories:

 Threshold detection systems: Threshold detection involves counting the number of

occurrences of a specific event type over an interval of time.

 Profile-based systems: Profile-based anomaly detection focuses on characterizing the

past behavior of individual users or related groups of users and then detecting

significant deviations.

Examples of metrics that are useful for profile-based intrusion detection are the

following:

• Counter: A nonnegative integer that may be incremented but not decremented until

it is reset by management action.

• Gauge: A nonnegative integer that may be incremented or decremented. Typically, a

gauge is used to measure the current value of some entity.

• Interval timer: The length of time between two related events.

• Resource utilization: Quantity of resources consumed during a specified period.

Given these general metrics, various tests can be performed to determine whether current

activity fits within acceptable limits. the following approaches that may be taken:

 Mean and standard deviation- of a parameter over some historical period. This gives

a reflection of the average behavior and its variability.

 Multivariate - A multivariate model is based on correlations between two or more

variables.

• Markov process- A Markov process model is used to establish transition

probabilities among various states.

• Time series- A time series model focuses on time intervals, looking for

sequences of events that happen too rapidly or too slowly.

• Operational- Finally, an operational model is based on a judgment of what

is considered abnormal, rather than an automated analysis of past audit records.

Rule-Based Intrusion Detection:

 Rule-based techniques detect intrusion by observing events in the system and applying

a set of rules that lead to a decision regarding whether a given pattern of activity is or

is not suspicious.

 Rule-based anomaly detection is similar in terms of its approach and strengths to

statistical anomaly detection.

 With the rule-based approach, historical audit records are analyzed to identify usage

patterns and to generate automatically rules that describe those patterns. Rules may

represent past behavior patterns of users, programs, privileges, time slots, terminals,

and so on.

 Rule-based penetration identification takes a very different approach to intrusion

detection. The key feature of such systems is the use of rules for identifying known

penetrations or penetrations that would exploit known weaknesses.

 Rules can also be defined that identify suspicious behavior, even when the behavior is

within the bounds of established patterns of usage.

Distributed Intrusion Detection

 Until recently, work on intrusion detection systems focused on single-system

standalone facilities.

 Porras points out the following major issues in the design of a distributed intrusion

detection system :

• A distributed intrusion detection system may need to deal with different audit record

formats.

• One or more nodes in the network will serve as collection and analysis points for the

data from the systems on the network.

• Either a centralized or decentralized architecture can be used. With a centralized

architecture, there is a single central point of collection and analysis of all audit data.

A good example of a distributed intrusion detection system, which consists of three main

components:

• Host agent module: An audit collection module operating as a background process

on a monitored system. Its purpose is to collect data on security related events on the

host and transmit these to the central manager.

• LAN monitor agent module: Operates in the same fashion as a host agent module

except that it analyzes LAN traffic and reports the results to the central manager.

• Central manager module: Receives reports from LAN monitor and host agents and

processes and correlates these reports to detect intrusion.

 Figure 20.3 shows the general approach that is taken. The agent captures each audit

record produced by the native audit collection system. A filter is applied that retains

only those records that are of security interest.

 At the lowest level, the agent scans for notable events that are of interest independent

of any past events.

 At the next higher level, the agent looks for sequences of events, such as known attack

patterns (signatures).

 Finally, the agent looks for anomalous behavior of an individual user based on a

historical profile of that user, such as number of programs executed, number of files

accessed, and the like.

Honeypots

 A relatively recent innovation in intrusion detection technology is the honeypot.

Honeypots are decoy systems that are designed to lure a potential attacker away from

critical systems.

 Honeypots are designed to

• divert an attacker from accessing critical systems

• collect information about the attacker’s activity

• encourage the attacker to stay on the system long enough for administrators to

respond

 Initial efforts involved a single honeypot computer with IP addresses designed to attract

hackers. More recent research has focused on building entire honeypot networks that

emulate an enterprise, possibly with actual or simulated traffic and data. Once hackers

are within the network, administrators can observe their behavior in detail and figure

out defenses.

Intrusion Detection Exchange Format:

 To facilitate the development of distributed intrusion detection systems that can

function across a wide range of platforms and environments, standards are needed to

support interoperability. Such standards are the focus of the IETF Intrusion Detection

Working Group.

 The purpose of the working group is to define data formats and exchange procedures

for sharing information of interest to intrusion detection and response systems and to

management systems that may need to interact with them.

The outputs of this working group include:

1. A requirements document, which describes the high-level functional

requirements

2. A common intrusion language specification, which describes data formats

that satisfy the requirements.

3. A framework document, which identifies existing protocols best used for

communication

5.4.2. MALICIOUS SOFTWARE

Malicious software can be divided into two categories:

 Those that need a host program, and those that are independent.

 The former are essentially fragments of programs that cannot exist independently of

some actual application program, utility, or system program.

 Viruses, logic bombs, and backdoors are examples. The latter are self-contained

programs that can be scheduled and run by the operating system. Worms and zombie

programs are examples.

5.4.3. VIRUSES

Contents

 The Nature of Viruses

 Infection mechanism:
 Trigger:

 Payload:

 Virus Structure

 Viruses Classification
 classification by target
 classification by concealment strategy

 Virus Kits

 Macro Viruses

 E-Mail Viruses

 Perhaps the most sophisticated types of threats to computer systems are presented by

programs that exploit vulnerabilities in computing systems.

Backdoor:

 A backdoor, also known as a trapdoor, is a secret entry point into a program that allows

someone that is aware of the backdoor to gain access without going through the usual

security access procedures.

 Programmers have used backdoors legitimately for many years to debug and test

programs.

 The backdoor is code that recognizes some special sequence of input or is triggered by

being run from a certain user ID or by an unlikely sequence of events.

 Backdoors become threats when unscrupulous programmers use them to gain

unauthorized access.

 The backdoor was the basic idea for the vulnerability portrayed in the movie War

Games.

Logic Bomb

 One of the oldest types of program threat, predating viruses and worms, is the logic

bomb.

 The logic bomb is code embedded in some legitimate program that is set to "explode"

when certain conditions are met.

 Examples of conditions that can be used as triggers for a logic bomb are the presence

or absence of certain files, a particular day of the week or date, or a particular user

running the application.

 Once triggered, a bomb may alter or delete data or entire files, cause a machine halt,

or do some other damage.

Trojan Horses

 A Trojan horse is a useful, or apparently useful, program or command procedure

containing hidden code that, when invoked, performs some unwanted or harmful

function.

 Trojan horse programs can be used to accomplish functions indirectly that an

unauthorized user could not accomplish directly.

 For example, to gain access to the files of another user on a shared system, a user could

create a Trojan horse program that, when executed,changed the invoking user's file

permissions so that the files are readable by any user.

 The author could then induce users to run the program by placing it in a common

directory and naming it such that it appears to be a useful utility.

 The code creates a backdoor in the login program that permits the author to log on to

the system using a special password.

 This Trojan horse can never be discovered by reading the source code of the login

program.

Zombie

 A zombie is a program that secretly takes over another Internet-attached computer and

then uses that computer to launch attacks that are difficult to trace to the zombie's

creator.

 Zombies are used in denial-of-service attacks, typically against targeted Web sites.

 The zombie is planted on hundreds of computers belonging to unsuspecting third

parties, and then used to overwhelm the target Web site by launching an overwhelming

onslaught of Internet traffic.

The Nature of Viruses

 A computer virus is a piece of software that can “infect” other programs by modifying

them; the modification includes injecting the original program with a routine to make

copies of the virus program, which can then go on to infect other programs.

 A virus can do anything that other programs do. The difference is that a virus attaches

itself to another program and executes secretly when the host program is run.

A computer virus has three parts:

 Infection mechanism: The means by which a virus spreads, enabling it to replicate.

The mechanism is also referred to as the infection vector.

 Trigger: The event or condition that determines when the payload is activated or

delivered.

 Payload: What the virus does, besides spreading. During its lifetime.

A typical virus goes through the following four phases:

 Dormant phase: The virus will eventually be activated by some event, such as a

date, the presence of another program or file, or the capacity of the disk exceeding

some limit.

 Propagation phase: The virus places a copy of itself into other programs or into

certain system areas on the disk.

 Triggering phase: As with the dormant phase, the triggering phase can be caused

by a variety of system events, including a count of the number of times that this

copy of the virus has made copies of itself.

 Execution phase: The function may be harmless, such as a message on the screen,

or damaging, such as the destruction of programs and data files.

Virus Structure A virus can be prepended or postpended to an executable program, or it can

be embedded in some other fashion. In this case, the virus code,V, is prepended to infected

programs, and it is assumed that the entry point to the program, when invoked, is the first line

of the program.

When this program is invoked, control passes to its virus, which performs the following steps:

1. For each uninfected file P2 that is found, the virus first compresses that file to produce

,which is shorter than the original program by the size of the virus.

2. A copy of the virus is prepended to the compressed program.

3. The compressed version of the original infected program is uncompressed.

4. The uncompressed original program is executed.

Viruses Classification:

Viruses are classified along two orthogonal axes:

 The type of target the virus tries to infect and

 The method the virus uses to conceal itself from detection by users and antivirus

software.

A virus classification by target includes the following categories:

• Boot sector infector: Infects a master boot record or boot record and spreads when a

system is booted from the disk containing the virus.

• File infector: Infects files that the operating system or shell consider to be executable.

• Macro virus: Infects files with macro code that is interpreted by an application.

 A virus classification by concealment strategy includes the following categories:

• Encrypted virus: A typical approach is as follows. A portion of the virus creates a

random encryption key and encrypts the remainder of the virus. The key is stored with

the virus.

• Stealth virus: A form of virus explicitly designed to hide itself from detection by

antivirus software. Thus, the entire virus, not just a payload is hidden.

• Polymorphic virus: A virus that mutates with every infection, making detection by

the “signature” of the virus impossible.

• Metamorphic virus: As with a polymorphic virus, a metamorphic virus mutates with

every infection. Metamorphic viruses may change their behavior as well as their

appearance.

Virus Kits

 Another weapon in the virus writers’ armory is the virus-creation toolkit. Such a toolkit

enables a relative novice to quickly create a number of different viruses.

 Although viruses created with toolkits tend to be less sophisticated than viruses

designed from scratch, the sheer number of new viruses that can be generated using a

toolkit creates a problem for antivirus schemes.

Macro Viruses

 In the mid-1990s, macro viruses became by far the most prevalent type of virus. Macro

viruses are particularly threatening for a number of reasons:

1. A macro virus is platform independent.

2. Macro viruses infect documents, not executable portions of code.

3. Macro viruses are easily spread. A very common method is by electronic

mail.

4. Because macro viruses infect user documents rather than system programs,

traditional file system access controls are of limited use in preventing their

spread.

E-Mail Viruses:

 A more recent development in malicious software is the e-mail virus. The first rapidly

spreading e-mail viruses, such as Melissa, made use of a Microsoft Word macro

embedded in an attachment. If the recipient opens the e-mail attachment, the Word

macro is activated. Then

1. The e-mail virus sends itself to everyone on the mailing list in the user’s e-

mail package.

2. The virus does local damage on the user’s system.

WORM COUNTERMEASURES OR DIGITAL IMMUNE SYSTEM

Contents

 Countermeasures

 Antivirus Approaches

 Detection:
 Identification:
 Removal:

 First generation: simple scanners

 Second generation: heuristic scanners

 Third generation: activity traps

 Fourth generation: full-featured protection

 Advanced Antivirus Techniques

 Generic Decryption:

 CPU emulator:
 Virus signature scanner:
 Emulation control module:

 Digital Immune System:

 Integrated mail systems:
 Mobile-program systems:

 Behavior-Blocking Software:

Countermeasures:

Antivirus Approaches:

 The ideal solution to the threat of viruses is prevention:

o Do not allow a virus to get into the system in the first place, or

o block the ability of a virus to modify any files containing executable code or

macros.

 The next best approach is to be able to do the following:

• Detection: Once the infection has occurred, determine that it has occurred and locate

the virus.

• Identification: Once detection has been achieved, identify the specific virus that has

infected a program.

• Removal: Once the specific virus has been identified, remove all traces of the virus

from the infected program and restore it to its original state. Remove the virus from all

infected systems so that the virus cannot spread further.

 The four generations of antivirus software:

• First generation: simple scanners

• Second generation: heuristic scanners

• Third generation: activity traps

• Fourth generation: full-featured protection

 A first-generation scanner requires a virus signature to identify a virus. The virus may

contain “wildcards” but has essentially the same structure and bit pattern in all copies.

 A second-generation scanner does not rely on a specific signature. Rather, the scanner

uses heuristic rules to search for probable virus infection.

 Third-generation programs are memory-resident programs that identify a virus by its

actions rather than its structure in an infected program.

 Fourth-generation products are packages consisting of a variety of antivirus

techniques used in conjunction.

Advanced Antivirus Techniques

 More sophisticated antivirus approaches and products continue to appear. In this

subsection, we highlight some of the most important.

Generic Decryption:

 Generic decryption (GD) technology enables the antivirus program to easily detect even

the most complex polymorphic viruses while maintaining fast scanning speeds. In order

to detect such a structure, executable files are run through a GD scanner,

Which contains the following elements?

• CPU emulator: A software-based virtual computer. Instructions in an executable file

are interpreted by the emulator rather than executed on the underlying processor.

• Virus signature scanner: A module that scans the target code looking for known

virus signatures.

• Emulation control module: Controls the execution of the target code.

Digital Immune System:

 The motivation for this development has been the rising threat of Internet-based virus

propagation.

 The two major trends in Internet technology are

• Integrated mail systems: Systems such as Lotus Notes and Microsoft Outlook make

it very simple to send anything to anyone and to work with objects that are received.

• Mobile-program systems: Capabilities such as Java and ActiveX allow programs to

move on their own from one system to another.

 Figure 21.4 illustrates the typical steps in digital immune system operation:

1. A monitoring program on each PC uses a variety of heuristics based on

system behavior.

2. The administrative machine encrypts the sample and sends it to a central virus

analysis machine.

3. This machine creates an environment in which the infected program can be

safely run for analysis.

4. The resulting prescription is sent back to the administrative machine.

5. The administrative machine forwards the prescription to the infected client.

6. The prescription is also forwarded to other clients in the organization.

7. Subscribers around the world receive regular antivirus updates that protect

them from the new virus.

 Behavior-Blocking Software:

 The behavior blocking software blocks potentially malicious actions before they

have a chance to affect the system.

 Monitored behaviors can include

o Attempts to open, view, delete, and/or modify files;

o Attempts to format disk drives and other unrecoverable disk operations;

o Modifications to the logic of executable files or macros;

o Modification of critical system settings, such as start-up settings;

o Scripting of e-mail and instant messaging clients to send executable content;

and

o Initiation of network communications.

 Figure 21.5 illustrates the operation of a behavior blocker. Behavior-blocking software

runs on server and desktop computers and is instructed through policies set by the

network administrator to let benign actions take place but to intercede when

unauthorized or suspicious actions occur.

5.4.4. FIREWALLS

Internet Firewalls for Trusted Systems

 A firewall is a device or group of devices that controls access between networks.

 A firewall generally consists of filters and gateway(s), varying from firewall to firewall.

 It is a security gateway that controls access between the public Internet and an intranet

(a private internal network) and is a secure computer system placed between a trusted

network and an untrusted internet.

 Firewalls act as an intermediate server in handling SMTP and HTTP connections in

either direction.

 Firewalls can be classified into three main categories: packet filters, circuit-level

gateways and application-level gateways

Contents

 Role of Firewalls

 Firewall-Related Terminology

 Types of Firewalls

 Firewall Designs

Screened Host Firewall (Single-homed Bastion

Host)

Screened Host Firewall (Dual-homed Bastion

Host)

Screened Subnet Firewall

Role of Firewalls:

 The firewall itself must be immune to penetration.

 Firewalls create checkpoints (or choke points) between an internal private network and

an untrusted Internet .

 The firewall may filter on the basis of IP source and destination addresses and TCP port

number.

 The firewall also enforces logging, and provides alarm capacities as well.

 Firewalls may block TELNET or RLOGIN connections from the Internet to the

intranet.

 They also block SMTP and FTP connections to the Internet from internal systems not

authorised to send e-mail or to move files.

 The firewall provides protection from various kinds of IP spoofing and routing attacks.

 Firewall-Related Terminology:

To design and configure a firewall, some familiarity with the basic terminology is required.

.

o Bastion Host

o Proxy Server

o SOCKS

o Choke Point

o De-militarised Zone (DMZ)

o Logging and Alarms

o VPN

Bastion Host

 A bastion host is a publicly accessible device for the network’s security, which has a

direct connection to a public network such as the Internet.

 The bastion host serves as a platform for any one of the three types of firewalls: packet

filter, circuit-level gateway or application-level gateway.

 Bastion hosts must check all incoming and outgoing traffic and enforce the rules

specified in the security policy. They must be prepared for attacks from external and

possibly internal sources. They should be built with the least amount of hardware and

software in order for a potential hacker to have less opportunity to overcome the

firewall.

 The bastion host’s role falls into the following three common types:

o Single-homed bastion host: This is a device with only one network

interface, normally used for an application-level gateway. The external

router is configured to send all incoming data to the bastion host, and all

internal clients are configured to send all outgoing data to the host.

o Dual-homed bastion host: This is a firewall device with at least two

network interfaces. Dual-homed bastion hosts serve as application-level

gateways, and as packet filters and circuit-level gateways as well. The

advantage of using such hosts is that they create a complete break between

the external network and the internal network.

o Multihomed bastion host: Single-purpose or internal bastion hosts can be

classified as either single-homed or multihomed bastion hosts. The latter are

used to allow the user to enforce strict security mechanisms.

Proxy Server

 When the security policy requires all inbound and outbound traffic to be sent through a

proxy server, a new proxy server should be created for the new streaming application.

On the new proxy server, it is necessary to implement strict security mechanisms such

as authentication.

SOCKS

 The SOCKS protocol version 4 provides for unsecured firewall traversal for TCP-based

client/server applications, including HTTP, TELNET and FTP.

 The new protocol extends the SOCKS version 4 model to include UDP, and allows the

framework to include provision for generalized strong authentication schemes, and

extends the addressing scheme to encompass domain name and IPv6 addresses.

Choke Point

 The most important aspect of firewall placement is to create choke points. A choke

point is the point at which a public internet can access the internal network. The most

comprehensive and extensive monitoring tools should be configured on the choke

points.

 Proper implementation requires that all traffic be funnelled through these choke points

De-militarised Zone (DMZ)

 The DMZ is an expression that originates from the Korean War. It meant a strip of land

forcibly kept clear of enemy soldiers. In terms of a firewall, the DMZ is a network that

lies between an internal private network and the external public network.

 DMZ networks are sometimes called perimeter networks. A DMZ is used as an

additional buffer to further separate the public network from the internal network.

 A gateway is a machine that provides relay services to compensate for the effects of a

filter. The network inhabited by the gateway is often called the DMZ. A gateway in the

DMZ is sometimes assisted by an internal gateway.

Logging and Alarms

 Logging is usually implemented at every device in the firewall, but these individual

logs combine to become the entire record of user activity. Packet filters normally do

not enable logging by default so as not to degrade performance. Packet filters as well

as circuit-level gateways log only the most basic information.

VPN

 Some firewalls are now providing VPN services. VPNs are appropriate for any

organization requiring secure external access to internal resources. All VPNs are

tunneling protocols in the sense that their information packets or payloads are

encapsulated or tunneled into the network packets.

 All data transmitted over a VPN is usually encrypted because an opponent with access

to the Internet could eavesdrop on the data as it travels over the public network. The

VPN encapsulates all the encrypted data within an IP packet. Authentication, message

integrity and encryption are very important fundamentals for implementing a VPN.
.

Types of firewall

Contents

 Types of Firewalls

 Packet Filtering Firewall

 Stateful Inspection Firewalls

 Application-Level Gateway

 Circuit-Level Gateway

Types of Firewalls

 A firewall may act as a packet filter. It can operate as a positive filter, allowing to pass

only packets that meet specific criteria, or as a negative filter, rejecting any packet that

meets certain criteria.

Packet Filtering Firewall

 A packet filtering firewall applies a set of rules to each incoming and outgoing IP packet

and then forwards or discards the packet.

 The firewall is typically configured to filter packets going in both directions (from and

to the internal network). Filtering rules are based on information contained in a network

packet:

o Source IP address: The IP address of the system that originated the IP packet

o Destination IP address: The IP address of the system the IP packet is trying to

reach

o Source and destination transport-level address: The transport-level (e.g.,

TCP or UDP) port number, which defines applications such as SNMP or

TELNET

o IP protocol field: Defines the transport protocol

o Interface: For a firewall with three or more ports, which interface of the

firewall the packet came from or which interface of the firewall the packet is

destined for

 The packet filter is typically set up as a list of rules based on matches to fields in the IP

or TCP header. Two default policies are possible:

• Default = discard: That which is not expressly permitted is prohibited.

• Default = forward: That which is not expressly prohibited is permitted.

 The default discard policy is more conservative. Initially, everything is blocked, and

services must be added on a case-by-case basis.

 The default forward policy increases ease of use for end users but provides reduced

security; the security administrator must, in essence, react to each new security threat

as it becomes known.

A. Inbound mail is allowed (port 25 is for SMTP incoming), but only to a gateway host.

However, packets from a particular external host, SPIGOT, are blocked because that

host has a history of sending massive files in e-mail messages.

B. This is an explicit statement of the default policy. All rulesets include this rule

implicitly as the last rule.

 One advantage of a packet filtering firewall is its simplicity. Also, packet filters

typically are transparent to users and are very fast.

 The following are disadvantages of packet filter firewalls:

o Because packet filter firewalls do not examine upper-layer data, they cannot

prevent attacks that employ application-specific vulnerabilities or functions.

o Because of the limited information available to the firewall, the logging

functionality present in packet filter firewalls is limited.

o Most packet filter firewalls do not support advanced user authentication

schemes.

o Packet filter firewalls are generally vulnerable to attacks, such as network layer

address spoofing.

o Finally, due to the small number of variables used in access control decisions,

packet filter firewalls are susceptible to security breaches caused by improper

configurations.

 Some of the attacks that can be made on packet filtering firewalls and the appropriate

countermeasures are the following:

o IP address spoofing: The intruder transmits packets from the outside with a

source IP address field containing an address of an internal host.

o Source routing attacks: The source station specifies the route that a packet

should take as it crosses the Internet, in the hopes that this will bypass security

measures that do not analyze the source routing information.

o Tiny fragment attacks: The intruder uses the IP fragmentation option to create

extremely small fragments and force the TCP header information into a separate

packet fragment.

Stateful Inspection Firewalls

 A simple packet filtering firewall must permit inbound network traffic on all these high-

numbered ports for TCP-based traffic to occur. This creates a vulnerability that can be

exploited by unauthorized users.

 A stateful inspection packet firewall tightens up the rules for TCP traffic by creating a

directory of outbound TCP connections. There is an entry for each currently established

connection. The packet filter will now allow incoming traffic to high-numbered ports

only for those packets that fit the profile of one of the entries in this directory.

 A stateful packet inspection firewall reviews the same packet information as a packet

filtering firewall, but also records information about TCP connections. Some stateful

firewalls also keep track of TCP sequence numbers to prevent attacks that depend on

the sequence number, such as session hijacking. Some even inspect limited amounts of

application data for some well-known protocols like FTP, IM and SIPS commands, in

order to identify and track related connections.

Application-Level Gateway:

 An application-level gateway, also called an application proxy, acts as a relay of

application-level traffic. The user contacts the gateway using a TCP/IP application,

such as Telnet or FTP, and the gateway asks the user for the name of the remote host to

be accessed.

 When the user responds and provides a valid user ID and authentication information,

the gateway contacts the application on the remote host and relays TCP segments

containing the application data between the two endpoints. If the gateway does not

implement the proxy code for a specific application, the service is not supported and

cannot be forwarded across the firewall.

 A prime disadvantage of this type of gateway is the additional processing overhead on

each connection. In effect, there are two spliced connections between the end users,

with the gateway at the splice point, and the gateway must examine and forward all

traffic in both directions.

Circuit-Level Gateway:

 A fourth type of firewall is the circuit-level gateway or circuit-level proxy. This can

be a stand-alone system or it can be a specialized function performed by an application-

level gateway for certain applications.

 As with an application gateway, a circuit-level gateway does not permit an end-to-end

TCP connection; rather, the gateway sets up two TCP connections, one between itself

and a TCP user on an inner host and one between itself and a TCP user on an outside

host.

 A typical use of circuit-level gateways is a situation in which the system administrator

trusts the internal users. The gateway can be configured to support application- level or

proxy service on inbound connections and circuit-level functions for outbound

connections. In this configuration, the gateway can incur the processing overhead of

examining incoming application data for forbidden functions but does not incur that

overhead on outgoing data.

 An example of a circuit-level gateway implementation is the SOCKS package; version

5 of SOCKS is specified in RFC 1928.The RFC defines SOCKS in the following

fashion:

SOCKS consists of the following components:

 The SOCKS server, which often runs on a UNIX-based firewall.

SOCKS is also implemented on Windows systems.

 The SOCKS client library, which runs on internal hosts protected by the

firewall.

 SOCKS-ified versions of several standard client programs such as FTP

and TELNET.

FIREWALL DESIGN OR FIREWALL CONFIGURATION

Contents

 Firewall Designs

o Screened Host Firewall (Single-

homed Bastion Host)

o Screened Host Firewall (Dual-

homed Bastion Host)

o Screened Subnet Firewall

Firewall design

 A security administrator must decide on the location and on the number of firewalls

needed. to implement a firewall strategy. The primary step in designing a secure

firewall is obviously to prevent the firewall devices from being compromised by threats.

 To provide a certain level of security, the three basic firewall designs are considered: a

single-homed bastion host, a dual-homed bastion host and a screened subnet firewall.

The first two options are for creating a screened host firewall, and the third option

contains an additional packet-filtering router to achieve another level of security.

Screened Host Firewall (Single-homed Bastion Host)

 The first type of firewall is a screened host which uses a single-homed bastion host

plus a packet-filtering router, as shown in Figure 10.4.

 Single-homed bastion hosts can be configured as either circuit-level or application-level

gateways.

 NAT is essentially needed for developing an address scheme internally. It is a critical

component of any firewall strategy. It translates the internal IP addresses to IANA

registered addresses to access the Internet. Hence, using NAT allows network

administrators to use any internal IP address scheme.

 The screened host firewall is designed such that all incoming and outgoing information

is passed through the bastion host.

 The external screening router is configured to route all incoming traffic directly to the

bastion host as indicated in Figure 10.4.

 The screening router is also configured to route outgoing traffic only if it originates

from the bastion host.

 A single-homed implementation may allow a hacker to modify the router not to

forward packets to the bastion host. This action would bypass the bastion host and allow

the hacker directly into the network.

 But such a bypass usually does not happen because a network using a single-homed

bastion host is normally configured to send packets only to the bastion host, and ot

directly to the Internet.

Screened Host Firewall (Dual-homed Bastion Host)

 The configuration of the screened host firewall using a dual-homed bastion host adds

significant security, compared with a single-homed bastion host. As shown in Figure

10.5, a dual-homed bastion host has two network interfaces.

 This firewall implementation is secure due to the fact that it creates a complete break

between the internal network and the external Internet. As with the single-homed

bastion, all external traffic is forwarded directly to the bastion host for processing.

 However, a hacker may try to subvert the bastion host and the router to bypass the

firewall mechanisms. Even if a hacker could defeat either the screening router or the

dual-homed bastion host, the hacker would still have to penetrate the other.

Nevertheless, a dual-homed bastion host removes even this possibility. It is also

possible to implement NAT for dual-homed bastion hosts.

Screened Subnet Firewall

 The third implementation of a firewall is the screened subnet, which is also known as a

DMZ. This firewall is the most secure one among the three implementations, simply

because it uses a bastion host to support both circuit- and application-level gateways.

 As shown in Figure 10.6, all publicly accessible devices, including modem and server,

are placed inside the DMZ.

 These DMZ then functions as a small isolated network positioned between the Internet

and the internal network.

 The screened subnet firewall contains external and internal screening routers. Each is

configured such that its traffic flows only to or from the bastion host. This arrangement

prevents any traffic from directly traversing the DMZ subnetwork.

 The external screening router uses standard filtering to restrict external access to the

bastion host, and rejects any traffic that does not come from the bastion host.

 The benefits of the screened subnet firewall are based on the following facts.

 First, a hacker must subvert three separate tri-homed interfaces when he or she wants

to access the internal network. But it is almost infeasible.

 Second, the internal network is effectively invisible to the Internet because all

inbound/outbound packets go directly through the DMZ.

 Third, internal users cannot access the Internet without going through the bastion host

because the routing information is contained within the network.

UNIT IV

MESSAGE AUTHENTICATION AND INTEGRITY

Authentication requirement – Authentication function – MAC – Hash function – Security of

hash function and MAC – SHA –Digital signature and authentication protocols – DSS- Entity

Authentication: Biometrics, Passwords, Challenge Response protocols- Authentication

applications – Kerberos, X.509

4.1. AUTHENTICATION REQUIREMENT

 In the context of communications across a network, the following attacks can be

identified.

1. Disclosure: Release of message contents to any person or process not possessing the

appropriate cryptographic key.

2. Traffic analysis: Discovery of the pattern of traffic between parties. In a connection-

oriented application, the frequency and duration of connections could be determined.

In either a connection-oriented or connectionless environment, the number and length

of messages between parties could be determined.

3. Masquerade: Insertion of messages into the network from a fraudulent source. This

includes the creation of messages by an opponent that are purported to come from an

authorized entity.

4. Content modification: Changes to the contents of a message, including insertion,

deletion, transposition, and modification.

5. Sequence modification: Any modification to a sequence of messages between

parties, including insertion, deletion, and reordering.

6. Timing modification: Delay or replay of messages. In a connection-oriented

application, an entire session or sequence of messages could be a replay of some

previous valid session, or individual messages in the sequence could be delayed or

replayed.

7. Source repudiation: Denial of transmission of message by source.

8. Destination repudiation: Denial of receipt of message by destination.

 In summary, message authentication is a procedure to verify that received messages

come from the alleged source and have not been altered. Message authentication may

also verify sequencing and timeliness.

 A digital signature is an authentication technique that also includes measures to counter

repudiation by the source.

4.2. AUTHENTICATION FUNCTION

 Any message authentication or digital signature mechanism has two levels of

functionality.

 At the lower level, there must be some sort of function that produces an authenticator:

a value to be used to authenticate a message. This lower-level function is then used as

a primitive in a higher-level authentication protocol that enables a receiver to verify the

authenticity of a message.

 These may be grouped into three classes

o Hash function

o Message Encryption

o Message Authentication Code

.

• Hash function: A function that maps a message of any length into a fixedlength hash

value, which serves as the authenticator

• Message encryption: The ciphertext of the entire message serves as its authenticator

• Message authentication code (MAC): A function of the message and a secret key

that produces a fixed-length value that serves as the authenticator

4.3. MAC - MESSAGE AUTHENTICATION CODE

 An alternative authentication technique involves the use of a secret key to generate a

small fixed-size block of data, known as a cryptographic checksum or MAC, that is

appended to the message. This technique assumes that two communicating parties, say

A and B, share a common secret key K.

 When A has a message to send to B, it calculates the MAC as a function of the message

and the key:

where

M = input message

C = MAC function

K = shared secret key

MAC = message authentication code

 If we assume that only the receiver and the sender know the identity of the secret key,

and if the received MAC matches the calculated MAC, then

1. The receiver is assured that the message has not been altered.

2. The receiver is assured that the message is from the alleged sender.

3. If the message includes a sequence number (such as is used with HDLC,

X.25, and TCP), then the receiver can be assured of the proper sequence because

an attacker cannot successfully alter the sequence number.

 The process depicted in Figure a provides authentication but not confidentiality,

because the message as a whole is transmitted in the clear.

 Confidentiality can be provided by performing message encryption either after (Figure

.b) or before (Figure c) the MAC algorithm. In both these cases, two separate keys are

needed, each of which is shared by the sender and the receiver.

 In the first case, the MAC is calculated with the message as input and is then

concatenated to the message. The entire block is then encrypted. In the second case, the

message is encrypted first.

 Then the MAC is calculated using the resulting ciphertext and is concatenated to the

ciphertext to form the transmitted block. Typically, it is preferable to tie the

authentication directly to the plaintext, so the method of Figure b is used.

Application of MAC

 Application in message is broadcast to a number of destinations.

 Authentication of a computer program in plain text is an attractive service

4.4. HASH FUNCTION

 A variation on the message authentication code is the one way hash function. As

with MAC, a hash function accepts a variable size message M as input and

produces affixed-size output, referred to as hash code h=H(M).

 Unlike a MAC, a hash code does not use a key but is a function only of the input

message. The hash code is also referred to as a message digest or hash value.

Fig .a. Encrypt message plus hash code

Sender:

 The sender creates a message using SHA to generate a 160 bit hashcode.

 The message and hashcode is concatenated and the result is encrypted

using symmetric Encryption Algorithm.

Receiver:

 The receiver uses RSA (or) DSA algorithm to decrypt the message and

recover hashcode.

 The receiver generates a new hashcode for the message and compare it

with decrypted hashcode

 If two hashcodes are match ,the message is accepted,else it is rejected.

Fig .b. Encrypt hash code shared secret key

Sender:

 The sender creates a message using SHA to generate a 160 bit hashcode.

 Only the hash code is encrypted using Symmetric Encryption.

 The message and hash code encrypted and result is concatented

Receiver:

 The receiver uses RSA (or) DSA algorithm to decrypt the message and

recover hashcode.

 The receiver generates a new hashcode for the message and compare it

with decrypted hashcode

 If two hashcodes are match ,the message is accepted,else it is rejected.

Fig .c. Encrypt hash code sender’s private key

Sender:

 The sender creates a message using SHA to generate a 160 bit hashcode.

 Only the hash code is encrypted using public key encryption and using the

sender’s private key.

 The message and hash code encrypted and result is concatented

Receiver:

 The receiver uses RSA (or) DSA algorithm to decrypt the message and

recover hashcode.

 The receiver generates a new hashcode for the message and compare it

with decrypted hashcode

 If two hashcodes are match ,the message is accepted,else it is rejected.

D) Sender:

 The sender creates a message using SHA to generate a 160 bit hashcode.

 Only the hash code is encrypted using public key encryption and using the

sender’s private key.

 The message and hash code encrypted and result is concatented

Receiver:

 The receiver uses RSA (or) DSA algorithm to decrypt the message and

recover hashcode.

 The receiver generates a new hashcode for the message and compare it

with decrypted hashcode which uses the public key Encryption Algorithm

of public key of sender.

 If two hashcodes are match ,the message is accepted,else it is rejected.

E) Sender:

 The sender creates a message M using SHA to generate a 160 bit

hashcode.\

 This technique uses a hash fuction,but no encryption for message

authentication

 This technique assumes that the two communicating parties share a

common secret value ‘S’.

 The source computes the hash value over the concatenation of M and S and

appends the resulting hashvalue to M.

Receiver:

 The receiver uses RSA (or) DSA algorithm to decrypt the message and

recover hashcode.

 The receiver generates a new hashcode for the message and compare it

with decrypted hashcode which uses the public key Encryption Algorithm

of public key of sender.

 The Message concatenated with hash value and ‘S’ is compared with

receiver ‘s hash value.

 If two hashcodes are match ,the message is accepted,else it is rejected.

 f) Confidentiality can be added to the previous approach by encrypting the entire message

plus the hash code.

Requirements for a Hash Function

1. H can be applied to a block of data of any size.

2.H produces a fixed-length output.

3. H(x) is relatively easy to compute for any given x, making both hardware and Software

implementations practical.

4. For any* given value h, it is computationally infeasible to find x such that H(x) =h. This

is sometimes referred to in the literature as the one-way property.

5. For any given block x, it is computationally infeasible to find y x such that H(y) = H(x).

This is

 sometimes referred to as weak hash function.

6. It is computationally infeasible to find any pair (x, y) such that H(x) = H(y). This is

sometimes referred to as strong collision resistance.

 The first three properties are requirements for the practical application of a hash

function to message authentication.

 The fourth property, the one-way property, states that it is easy to generate a code

given a message but virtually impossible to generate a message given a code.

 The fifth property guarantees that an alternative message hashing to the same

value as a given message cannot be found.

 This prevents forgery when an encrypted hash code is used (Figures b and c).

 The sixth property refers to how resistant the hash function is to a type of attack

known as the birthday attack, which we examine shortly.

Message Encryption

 Message encryption by itself can provide a measure of authentication.

 The analysis differs for

o symmetric and
o public-key encryption schemes.

Symmetric Encryption

 Consider the straightforward use of symmetric encryption (Figure 12.1a). A message

M transmitted from source A to destination B is encrypted using a secret key K shared

by A and B. If no other party knows the key, then confidentiality is provided: No other

party can recover the plaintext of the message.

 In addition, B is assured that the message was generated by A. Why? The message must

have come from A, because A is the only other party that possesses K and therefore the

only other party with the information necessary to construct ciphertext that can be

decrypted with K.

 Furthermore, if M is recovered, B knows that none of the bits of M have been altered,

because an opponent that does not know K would not know how to alter bits in the

ciphertext to produce the desired changes in the plaintext.

 Thus, in general, we require that only a small subset of all possible bit patterns be

considered legitimate plaintext. In that case, any spurious ciphertext is unlikely to

produce legitimate plaintext.

 For example, suppose that only one bit pattern in 106 is legitimate plaintext. Then the

probability that any randomly chosen bit pattern, treated as ciphertext, will produce a

legitimate plaintext message is only 10-6. For a number of applications and encryption

schemes, the desired conditions prevail as a matter of course.

 For example, suppose that we are transmitting Englishlanguage messages using a

Caesar cipher with a shift of one (K = 1). A sends the following legitimate ciphertext:

B decrypts to produce the following plaintext:

 A simple frequency analysis confirms that this message has the profile of ordinary

English. On the other hand, if an opponent generates the following random sequence of

letters:

this decrypts to

Public-Key Encryption

 The straightforward use of public-key encryption (Figure 12.1b) provides

confidentiality but not authentication. The source (A) uses the public key PUb of the

destination (B) to encrypt M. Because only B has the corresponding private key PRb,

only B can decrypt the message. This scheme provides no authentication, because any

opponent could also use B’s public key to encrypt a message and claim to be A.

 To provide authentication, A uses its private key to encrypt the message, and B uses

A’s public key to decrypt (Figure 12.1c). This provides authentication using the same

type of reasoning as in the symmetric encryption case: The message must have come

from A because A is the only party that possesses PRa and therefore the only party with

the information necessary to construct ciphertext that can be decrypted with PUa.

 Again, the same reasoning as before applies: There must be some internal structure to

the plaintext so that the receiver can distinguish between well-formed plaintext and

random bits.

4.5. SECURITY OF HASH FUNCTION AND MAC

Contents

 Security of hash function and MAC

 Brute-Force Attacks

o Hash functions

o Message Authentication Code.

 Cryptanalysis

Security of hash function and MAC

 We can group attacks on MACs into two categories: brute-force attacks and

cryptanalysis.

Brute-Force Attacks

 A brute-force attack on a MAC is a more difficult undertaking than a brute-force attack

on a hash function because it requires known message-tag pairs. Let us see why this is

so. To attack a hash code, we can proceed in the following way.

Hash functions

 The strength of a hash function against brute-force attacks depends solely on the length

of the hash code produced by the algorithm. Recall from our discussion of hash

functions that there are three desirable properties:

o One-way: For any given code h, it is computationally infeasible to find x such

that H(x) = h.

o Weak collision resistance: For any given block x, it is computationally

infeasible to find y x with H(y) = H(x).

o Strong collision resistance: It is computationally infeasible to find any pair (x,

y) such that H (x) = H(y).

 For a hash code of length n, the level of effort required, as we have seen is proportional

to the following

Message Authentication Codes

A brute-force attack on a MAC is a more difficult undertaking because it requires known

message-MAC pairs. Let us see why this is so.

To attack a hash code, we can proceed in the following way.

 Given a fixed message x with n-bit hash code h = H(x), a brute-force method of finding

a collision is to pick a random bit string y and check if H(y) = H(x).

 The attacker can do this repeatedly off line. Whether an off-line attack can be used on

a MAC algorithm depends on the relative size of the key and the MAC.

 To proceed, we need to state the desired security property of a MAC algorithm, which

can be expressed as follows:

Computation resistance:

 Given one or more text-MAC pairs [xi, C(K, xi)], it is computationally infeasible to

compute any text-MAC pair [x, C(K, x)] for any new input x≠ xi.

 The attacker would like to come up with the valid MAC code for a given message x.

 There are two lines of attack possible: Attack the key space and attack the MAC value

 If an attacker can determine the MAC key, then it is possible to generate a valid MAC

value for any input x.

 Suppose the key size is k bits and that the attacker has one known text-MAC pair. Then

the attacker can compute the n-bit MAC on the known text for all possible keys. At

least one key is guaranteed to produce the correct MAC, namely, the valid key that was

initially used to produce the known text-MAC pair. This phase of the attack takes a

level of effort proportional to 2k (that is, one operation for each of the 2k possible key

values).

 It can be shown that the level of effort drops off rapidly with each additional text-MAC

pair and that the overall level of effort is roughly 2k

 To summarize, the level of effort for brute-force attack on a MAC algorithm can be

expressed as min(2k, 2n)

Cryptanalysis

 The way to measure the resistance of a MAC algorithm to cryptanalysis is to compare

its strength to the effort required for a bruteforce attack. That is, an ideal MAC

algorithm will require a cryptanalytic effort greater than or equal to the brute-force

effort.

 There is much more variety in the structure of MACs than in hash functions, so it is

difficult to generalize about the cryptanalysis of MACs. Furthermore, far less work has

been done on developing such attacks.

Figure 11.9. General Structure of Secure Hash Code

 The hash algorithm involves repeated use of a compression function, f, that takes two

inputs (an n-bit input from the previous step, called the chaining variable, and a b-bit

block) and produces an n-bit output.

 At the start of hashing, the chaining variable has an initial value that is specified as part

of the algorithm. The final value of the chaining variable is the hash value. Often, b >

n; hence the term

 Compression. The hash function can be summarized as follows:

 Where the input to the hash function is a message M consisting of the blocks Yo, Y1,...,

YL1.

4.6. SHA

Contents

 Secure Hash Algorithm(SHA)

o SHA-512 Logic

o SHA-512 Round Function

Secure Hash Algorithm (SHA)

 SHA was developed by the Nation-bits foral Institute of Standards and Technology (NIST)

and published as a federal information processing standard (FIPS 180) in 1993. When

weaknesses were discovered in SHA, now known as SHA-0, a revised version was issued

as FIPS 180-1 in 1995 and is referred to as SHA-1.

 The actual standards document is entitled “Secure Hash Standard.” SHA is based on the

hash function MD4, and its design closely models MD4. SHA-1 produces a hash value of

160 bits.

 NIST produced a revised version of the standard, FIPS 180-2, that defined three new

versions of SHA, with hash value lengths of 256, 384, and 512 bits, known as SHA-256,

SHA-384, and SHA-512, respectively.

 Collectively, these hash algorithms are known as SHA-2. These new versions have the

same underlying structure and use the same types of modular arithmetic and logical binary

operations as SHA-1. A revised document was issued as FIP PUB 180-3 in 2008, which

added a 224-bit version (Table 11.3).

SHA-512 Logic

 The algorithm takes as input a message with a maximum length of less than 2128 bits and

produces as output a 512-bit message digest. The input is processed in 1024-bit blocks.

 Figure 11.9 depicts the overall processing of a message to produce a digest. This follows

the general structure depicted in Figure 11.8. The processing consists of the following steps.

 Step 1 Append padding bits. The message is padded so that its length is congruent to

896 modulo 1024 [length K 896(mod 1024)]. Padding is always added, even if the

message is already of the desired length. Thus, the number of padding bits is in the

range of 1 to 1024. The padding consists of a single 1 bit followed by the necessary

number of 0 bits.

 Step 2 Append length. A block of 128 bits is appended to the message. This block is

treated as an unsigned 128-bit integer (most significant byte first) and contains the

length of the original message (before the padding).

 The outcome of the first two steps yields a message that is an integer multiple of 1024

bits in length. In Figure 11.9, the expanded message is represented as the sequence of

1024-bit blocks M1, M2, c, MN, so that the total length of the expanded message is N *

1024 bits.

 Step 3 Initialize hash buffer. A 512-bit buffer is used to hold intermediate and final results

of the hash function. The buffer can be represented as eight 64-bit registers (a, b, c, d, e, f,

g, h). These registers are initialized to the following 64-bit integers (hexadecimal values):

 These values are stored in big-endian format, which is the most significant byte of a

word in the low-address (leftmost) byte position. These words were obtained by taking

the first sixty-four bits of the fractional parts of the square roots of the first eight prime

numbers.

 Step 4 Process message in 1024-bit (128-word) blocks. The heart of the algorithm is a

module that consists of 80 rounds; this module is labeled F in Figure 11.9. The logic is

illustrated in Figure 11.10.

 Each round takes as input the 512-bit buffer value, abcdefgh, and updates the contents

of the buffer. At input to the first round, the buffer has the value of the intermediate

hash value, Hi-1.

 Each round t makes use of a 64-bit value Wt, derived from the current 1024-bit block

being processed (Mi). These values are derived using a message schedule described

subsequently.Each round also makes use of an additive constant Kt, where 0 … t … 79

indicates one of the 80 rounds.

 Step 5 Output. After all N 1024-bit blocks have been processed, the output from the Nth

stage is the 512-bit message digest. We can summarize the behavior of SHA-512 as

follows:

where

IV------------ initial value of the abcdefgh buffer, defined in step 3

abcdefghi -- the output of the last round of processing of the ith message block

N ------------ the number of blocks in the message (including padding and length

fields)

SUM64 -----addition modulo 264

MD ----------final message digest value

SHA-512 Round Function

Let us look in more detail at the logic in each of the 80 steps of the processing of one

512-bit block (Figure 11.11). Each round is defined by the following set of equations:

Where

Two observations can be made about the round function.

1. Six of the eight words of the output of the round function involve simply permutation

(b, c, d, f , g, h) by means of rotation. This is indicated by shading in Figure 11.11.

2. Only two of the output words (a, e) are generated by substitution. Word e is a function

of input variables (d, e, f , g, h), as well as the round word Wt and the constant Kt. Word

a is a function of all of the input variables except d, as well as the round word Wt and

the constant Kt. It remains to indicate how the 64-bit word values Wt are derived from

the 1024-bit message. The remaining values are defined as

 Thus, in the first 16 steps of processing, the value of Wt is equal to the corresponding

word in the message block. For the remaining 64 steps, the value of Wt consists of the

circular left shift by one bit of the XOR of four of the preceding values of Wt, with two

of those values subjected to shift and rotate operations.

 This introduces a great deal of redundancy and interdependence into the message blocks

that are compressed, which complicates the task of finding a different message block

that maps to the same compression function output

4.7. DIGITAL SIGNATURE

Contents

 Digital Signatures

o Properties

o Attacks and Forgeries

o Digital Signature Requirements

o Direct Digital Signature
Digital Signatures

 A digital signature is an authentication mechanism that enables the creator of a

message to attach a code that acts as a signature. The signature is formed by taking

the hash of the message and encrypting the message with the creators private key

Properties

 Message authentication protects two parties who exchange messages from any third

party. However, it does not protect the two parties against each other. Several forms of

dispute between the two are possible.

 For example, suppose that John sends an authenticated message to Mary, using one of

the schemes of Figure 12.1. Consider the following disputes that could arise.

1. Mary may forge a different message and claim that it came from John. Mary would

simply have to create a message and append an authentication code using the key that

John and Mary share.

2. John can deny sending the message. Because it is possible for Mary to forge a

message, there is no way to prove that John did in fact send the message.

 Both scenarios are of legitimate concern. Here is an example of the first scenario: An

electronic funds transfer takes place, and the receiver increases the amount of funds

transferred and claims that the larger amount had arrived from the sender.

 An example of the second scenario is that an electronic mail message contains

instructions to a stockbroker for a transaction that subsequently turns out badly. The

sender pretends that the message was never sent.

 In situations where there is not complete trust between sender and receiver, something

more than authentication is needed. The most attractive solution to this problem is the

digital signature.

 The digital signature must have the following properties:

• It must verify the author and the date and time of the signature.

• It must authenticate the contents at the time of the signature.

• It must be verifiable by third parties, to resolve disputes.

Thus, the digital signature function includes the authentication function.

Attacks and Forgeries

 [GOLD88] lists the following types of attacks, in order of increasing severity. Here A

denotes the user whose signature method is being attacked, and C denotes the attacker.

• Key-only attack: C only knows A’s public key.

• Known message attack: C is given access to a set of messages and their signatures.

• Generic chosen message attack: C chooses a list of messages before attempting to

breaks A’s signature scheme, independent of A’s public key. C then obtains from A

valid signatures for the chosen messages.

• Directed chosen message attack: Similar to the generic attack, except that the list of

messages to be signed is chosen after C knows A’s public key but before any signatures

are seen.

• Adaptive chosen message attack: C is allowed to use A as an “oracle.” This means

that C may request from A signatures of messages that depend on previously obtained

message-signature pairs.

 [GOLD88] then defines success at breaking a signature scheme as an outcome in which

C can do any of the following with a non-negligible probability:

• Total break: C determines A’s private key.

• Universal forgery: C finds an efficient signing algorithm that provides an equivalent

way of constructing signatures on arbitrary messages.

• Selective forgery: C forges a signature for a particular message chosen by C.

• Existential forgery: C forges a signature for at least one message. C has no control

over the message. Consequently, this forgery may only be a minor nuisance to A.

Digital Signature Requirements

 On the basis of the properties and attacks just discussed, we can formulate the following

requirements for a digital signature.

• The signature must be a bit pattern that depends on the message being signed.

• The signature must use some information unique to the sender to prevent both forgery

and denial.

• It must be relatively easy to produce the digital signature.

• It must be relatively easy to recognize and verify the digital signature.

• It must be computationally infeasible to forge a digital signature, either by

constructing a new message for an existing digital signature or by constructing a

fraudulent digital signature for a given message.

• It must be practical to retain a copy of the digital signature in storage.

 Two general schemes for digital signatures

o Direct Digital Signature

o Arbitrated Digital Signature

Direct Digital Signature

 The term direct digital signature refers to a digital signature scheme that involves only

the communicating parties (source, destination). It is assumed that the destination

knows the public key of the source.

 Confidentiality can be provided by encrypting the entire message plus signature with a

shared secret key (symmetric encryption). Note that it is important to perform the

signature function first and then an outer confidentiality function.

 In case of dispute, some third party must view the message and its signature. If the

signature is calculated on an encrypted message, then the third party also needs access

to the decryption key to read the original message. However, if the signature is the inner

operation, then the recipient can store the plaintext message and its signature for later

use in dispute resolution.

 The validity of the scheme just described depends on the security of the sender’s private

key. If a sender later wishes to deny sending a particular message, the sender can claim

that the private key was lost or stolen and that someone else forged his or her signature.

 Administrative controls relating to the security of private keys can be employed to

thwart or at least weaken this ploy, but the threat is still there, at least to some degree.

One example is to require every signed message to include a timestamp (date and time)

and to require prompt reporting of compromised keys to a central authority.

 Another threat is that some private key might actually be stolen from X at time T. The

opponent can then send a message signed with X’s signature and stamped with a time

before or equal to T.

Arbitrated Digital Signature

 The problems associated with direct digital signatures can be addressed by using an

arbiter.

 As with direct signature schemes, there is a variety of arbitrated signature schemes.

In general terms, they all operate as follows.

 Every signed message from a sender X to a receiver Y goes first to an arbiter A, who

subjects the message and its signature to a number of tests to check its origin and

content.

 The message is then dated and sent to Y with an indication that it has been verified to

the satisfaction of the arbiter. The presence of A solves the problem faced by direct

signature schemes: that X might disown the message.

 The arbiter plays a sensitive and crucial role in this sort of scheme, and all parties must

have a great deal of trust that the arbitration mechanism is working properly Table 13.1,

based on scenarios described in [AKL83] and [MITC92], gives several examples of

arbitrated digital signatures.

 In the first, symmetric encryption is used. It is assumed that the sender X and the arbiter

A share a secret key Kxa and that A and Y share secret key Kay. X constructs a message

M and computes its hash value H(M).

 Then X transmits the message plus a signature to A. The signature consists of an

identifier IDX of X plus the hash value, all encrypted using Kxa. A decrypts the

signature and checks the hash value to validate the message.

 Then A transmits a message to Y, encrypted with Kay. The message includes IDX, the

original message from X, the signature, and a timestamp. Y can decrypt this to recover

the message and the signature. The timestamp informs Y that this message is timely

and not a replay. Y can store M and the signature. In case of dispute, Y, who claims to

have received M from X, sends the following message to A:

 The arbiter uses Kay to recover IDX, M, and the signature, and then uses Kxa to decrypt

the signature and verify the hash code. In this scheme, Y cannot directly check X's

signature; the signature is there solely to settle disputes. Y considers the message from

X authentic because it comes through A.

In this scenario, both sides must have a high degree of trust in A:

o X must trust A not to reveal Kxa and not to generate false signatures of the form

E(Kxa, [IDX||H (M)]).

o Y must trust A to send E(Kay, [IDX||M||E(Kxa, [IDX||H(M)])||T]) only if the

hash value is correct and the signature was generated by X.

o Both sides must trust A to resolve disputes fairly.

 If the arbiter does live up to this trust, then X is assured that no one can forge his

signature and Y is assured that X cannot disavow his signature.

4.8. AUTHENTICATION PROTOCOLS

Contents

 Authentication Protocols

o Mutual Authentication

o One-Way Authentication

Authentication Protocols

 Authentication Protocols are used to convince parties of each others identity and to

exchange session keys.they may be (mutual authentication and one-way

authentication)

Mutual Authentication

o Symmetric Encryption Approaches

o Public-Key Encryption Approaches

 An important application area is that of mutual authentication protocols. Such protocols

enable communicating parties to satisfy themselves mutually about each other's identity

and to exchange session keys.

 Central to the problem of authenticated key exchange are two issues: confidentiality

and timeliness.

 To prevent masquerade and to prevent compromise of session keys, essential

identification and session key information must be communicated in encrypted form.

 This requires the prior existence of secret or public keys that can be used for this

purpose. The second issue, timeliness, is important because of the threat of message

replays. Such replays, at worst, could allow an opponent to compromise a session key

or successfully impersonate another party.

 At minimum, a successful replay can disrupt operations by presenting parties with

messages that appear genuine but are not.

Lists the following examples of replay attacks:

o Simple replay: The opponent simply copies a message and replays it later.

o Repetition that can be logged: An opponent can replay a timestamped message

within the valid time window.

o Repetition that cannot be detected: This situation could arise because the original

message could have been suppressed and thus did not arrive at its destination; only

the replay message arrives.

o Backward replay without modification: This is a replay back to the message

sender. This attack is possible if symmetric encryption is used and the sender cannot

easily recognize the difference between messages sent and messages received on

the basis of content.

 The following two general approaches is used:

o Timestamps: Party A accepts a message as fresh only if the message contains a

timestamp that, in A's judgment, is close enough to A's knowledge of current time.

This approach requires that clocks among the various participants be synchronized.

o Challenge/response: Party A, expecting a fresh message from B, first sends B a

nonce (challenge) and requires that the subsequent message (response) received

from B contain the correct nonce value. It can be argued.

Symmetric Encryption Approaches

 A two-level hierarchy of symmetric encryption keys can be used to provide

confidentiality for communication in a distributed environment. In general, this strategy

involves the use of a trusted key distribution center (KDC).

 Each party in the network shares a secret key, known as a master key, with the KDC.

The KDC is responsible for generating keys to be used for a short time over a

connection between two parties, known as session keys, and for distributing those keys

using the master keys to protect the distribution.

 In step 1.Secret keys Ka and Kb are shared between A and the KDC and B and the

KDC, respectively. The purpose of the protocol is to distribute securely a session key

Ks to A and B. A securely acquires a new session key in step 2.

 The message in step 3 can be decrypted, and hence understood, only by B. Step 4

reflects B's knowledge of Ks, and step 5 assures B of A's knowledge of Ks and assures

B that this is a fresh message because of the use of the nonce N2 that the purpose of

steps 4 and 5 is to prevent a certain type of replay attack.

Suppress-replay attacks

 One way to counter suppress-replay attacks is to enforce the requirement that parties

regularly check their clocks against the KDC's clock. The other alternative, which

avoids the need for clock synchronization, is to rely on handshaking protocols using

nonces.

 This latter alternative is not vulnerable to a suppress-replay attack because the nonces

the recipient will choose in the future are unpredictable to the sender. The

Needham/Schroeder protocol relies on nonces only but, as we have seen, has other

vulnerabilities.

The protocol is as follows:

Let us follow this exchange step by step.

1. A initiates the authentication exchange by generating a nonce, Na, and sending that plus its

identifier to B in plaintext. This nonce will be returned to A in an encrypted message that

includes the session key, assuring A of its timeliness.

2. B alerts the KDC that a session key is needed. Its message to the KDC includes its identifier

and a nonce, Nb This nonce will be returned to B in an encrypted message that includes the

session key, assuring B of its timeliness. B's message to the KDC also includes a block

encrypted with the secret key shared by B and the KDC. This block is used to instruct the KDC

to issue credentials to A; the block specifies the intended recipient of the credentials, a

suggested expiration time for the credentials, and the nonce received from A.

3. The KDC passes on to A B's nonce and a block encrypted with the secret key that B shares

with the KDC. The block serves as a "ticket" that can be used by A for subsequent

authentications, as will be seen. The KDC also sends to A block encrypted with the secret key

shared by A and the KDC. This block verifies that B has received A's initial message (IDB)

and that this is a timely message and not a replay (Na) and it provides A with a session key

(Ks) and the time limit on its use (Tb).

4. A transmits the ticket to B, together with the B's nonce, the latter encrypted with the session

key. The ticket provides B with the secret key that is used to decrypt E(Ks, Nb) to recover the

nonce. The fact that B's nonce is encrypted with the session key authenticates that the message

came from A and is not a replay.

Public-Key Encryption Approaches

 This protocol assumes that each of the two parties is in possession of the current public

key of the other.

A protocol using timestamps is provided in

 In this case, the central system is referred to as an authentication server (AS), because

it is not actually responsible for secret key distribution. Rather, the AS provides public-

key certificates. The session key is chosen and encrypted by A; hence, there is no risk

of exposure by the AS.

 The timestamps protect against replays of compromised keys. This protocol is compact

but, as before, requires synchronization of clocks. Another approach, proposed by Woo

and Lam [WOO92a], makes use of nonces.

 The protocol consists of the following steps:

 In step 1, A informs the KDC of its intention to establish a secure connection with B.

The KDC returns to A. a copy of B's public-key certificate (step 2). Using B's public

key, A informs B of its desire to communicate and sends a nonce Na (step 3). In step 4,

B asks the KDC for A's public-key certificate and requests a session key; B includes

A's nonce so that the KDC can stamp the session key with that nonce.

 The nonce is protected using the KDC's public key. In step 5, the KDC returns to B a

copy of A's public-key certificate, plus the information {Na, Ks, IDB}. This information

basically says that Ks is a secret key generated by the KDC on behalf of B and tied to

Na; the binding of Ks and Na will assure A that Ks is fresh. This triple is encrypted,

using the KDC's private key, to allow B to verify that the triple is in fact from the KDC.

 It is also encrypted using B's public key, so that no other entity may use the triple in an

attempt to establish a fraudulent connection with A. In step 6, the triple {Na, Ks, IDB},

still encrypted with the KDC's private key, is relayed to A, together with a nonce Nb

generated by B. All the foregoing are encrypted using A's public key.

 A retrieves the session key Ks and uses it to encrypt Nb and return it to B. This last

message assures B of A's knowledge of the session key. This seems to be a secure

protocol that takes into account the various attacks.

 However, the authors themselves spotted a flaw and submitted a revised version of the

algorithm in [WOO92b]:

 The identifier of A, IDA, is added to the set of items encrypted with the KDC's private

key in steps 5 and 6. This binds the session key Ks to the identities of the two parties

that will be engaged in the session.

 This inclusion of IDA accounts for the fact that the nonce value Na is considered unique

only among all nonces generated by A, not among all nonces generated by all parties.

Thus, it is the pair {IDA, Na} that uniquely identifies the connection request of A.

One-Way Authentication

 One application for which encryption is growing in popularity is electronic mail (e-

mail). The very nature of electronic mail, and its chief benefit, is that it is not necessary

for the sender and receiver to be online at the same time. Instead, the e-mail message is

forwarded to the receiver's electronic mailbox, where it is buffered until the receiver is

available to read it.

 The "envelope" or header of the e-mail message must be in the clear, so that the message

can be handled by the store-and-forward e-mail protocol, such as the Simple Mail

Transfer Protocol (SMTP) or X.400. However, it is often desirable that the mail-

handling protocol not require access to the plaintext form of the message, because that

would require trusting the mail-handling mechanism. Accordingly, the e-mail message

should be encrypted such that the mail-handling system is not in possession of the

decryption key.

 A second requirement is that of authentication. Typically, the recipient wants some

assurance that the message is from the alleged sender.

Symmetric Encryption Approach

 Using symmetric encryption, the decentralized key distribution scenario illustrated in

Figure 7.11 is impractical. This scheme requires the sender to issue a request to the

intended recipient, await a response that includes a session key, and only then send the

message.

 With some refinement, the KDC strategy illustrated in Figure 7.9 is a candidate for

encrypted electronic mail. Because we wish to avoid requiring that the recipient (B) be

on line at the same time as the sender (A), steps 4 and 5 must be eliminated. For a

message with content M, the sequence is as follows:

 This approach guarantees that only the intended recipient of a message will be able to

read it. It also provides a level of authentication that the sender is A. As specified, the

protocol does not protect against replays. Some measure of defense could be provided

by including a timestamp with the message.

 However, because of the potential delays in the e-mail process, such timestamps may

have limited usefulness.

Public-Key Encryption Approaches

 We have already presented public-key encryption approaches that are suited to

electronic mail, including the straightforward encryption of the entire message for

confidentiality, authentication or both

 These approaches require that either the sender know the recipient's public key

(confidentiality) or the recipient know the sender's public key (authentication) or both

(confidentiality plus authentication). In addition, the public-key algorithm must be

applied once or twice to what may be a long message.

 If confidentiality is the primary concern, then the following may be more efficient:

 In this case, the message is encrypted with a one-time secret key. A also encrypts this

one-time key with B's public key. Only B will be able to use the corresponding private

key to recover the one-time key and then use that key to decrypt the message. This

scheme is more efficient than simply encrypting the entire message with B's public key.

 If authentication is the primary concern, then a digital signature may suffice, as was

illustrated in

 This method guarantees that A cannot later deny having sent the message. However,

this technique is open to another kind of fraud. Bob composes a message to his boss

Alice that contains an idea that will save the company money. He appends his digital

signature and sends it into the e-mail system.

 Eventually, the message will get delivered to Alice's mailbox. But suppose that Max

has heard of Bob's idea and gains access to the mail queue before delivery. He finds

Bob's message, strips off his signature, appends his, and requeues the message to be

delivered to Alice. Max gets credit for Bob's idea.

 To counter such a scheme, both the message and signature can be encrypted with the

recipient's public key:

4.9. DIGITAL SIGNATURE STANDARD

Contents

 Digital Signatures Standard

o The DSS Approach

o The Digital Signature Algorithm

Digital Signatures Standard

 The DSS makes use of the Secure Hash Algorithm (SHA) presents a new digital

signature technique, the Digital Signature Algorithm (DSA).

The DSS Approach

 The DSS uses an algorithm that is designed to provide only the digital signature

function. Unlike RSA, it cannot be used for encryption or key exchange. Nevertheless,

it is a public-key technique.

 Figure 13.3 contrasts the DSS approach for generating digital signatures to that used

with RSA. In the RSA approach, the message to be signed is input to a hash function

that produces a secure hash code of fixed length. This hash code is then encrypted using

the sender’s private key to form the signature.

 The DSS approach also makes use of a hash function. The hash code is provided as

input to a signature function along with a random number generated for this particular

signature.

 The signature function also depends on the sender’s private key and a set of parameters

known to a group of communicating principals. We can consider this set to constitute

a global public key .1 The result is a signature consisting of two components, labeled s

and r.

 At the receiving end, the hash code of the incoming message is generated. This plus the

signature is input to a verification function. The verification function also depends on

the global public key as well as the sender’s public key , which is paired with the

sender’s private key.

 The output of the verification function is a value that is equal to the signature

component if the signature is valid. The signature function is such that only the sender,

with knowledge of the private key, could have produced the valid signature. We turn

now to the details of the algorithm.

The Digital Signature Algorithm

 Figure 13.4 summarizes the algorithm. There are three parameters that are public and

can be common to a group of users. A 160-bit prime number is chosen. Next, a prime

number is selected with a length between 512 and 1024 bits such that divides (p - 1).

 Finally, g is chosen to be of the form h(p-1)/qmod p, where h is anp q q r (PUa) 2In

number-theoretic terms, g is of order q modp; see Chapter 8. integer between 1 and with

the restriction that must be greater than 1.2

 Thus, the global public-key components of DSA have the same for as in the Schnorr

signature scheme. With these numbers in hand, each user selects a private key and

generates a public key. The private key must be a number from 1 to and should be

chosen randomly or pseudorandomly.

 The public key is calculated from the private key as .The calculation of given is

relatively straightforward. However, given the public key, it is believed to be

computationally infeasible to determine , which is the discrete logarithm of y to the base

g, mod p.

 To create a signature, a user calculates two quantities, and , that are functions of the

public key components , the user’s private key , the hash code of the message , and an

additional integer that should be generated randomly or pseudorandomly and be unique

for each signing.

 At the receiving end, verification is performed using the formulas shown in Figure

13.4.The receiver generates a quantity that is a function of the public key components,

the sender’s public key, and the hash code of the incoming message. If this quantity

matches the component of the signature, then the signature is validated. Figure 13.5

depicts the functions of signing and verifying.

 The structure of the algorithm, as revealed in Figure 13.5, is quite interesting. Note that

the test at the end is on the value, which does not depend on the message at all. Instead,

is a function of and the three global public-key components.

 The multiplicative inverse of is passed to a function that also has as inputs the message

hash code and the user’s private key. The structure of this function is such that the

receiver can recover using the incoming message and signature, the public key of the

user, and the global public key. It is certainly not obvious from Figure 13.4 or Figure

13.5 that such a scheme would work. Because this value does not depend on the

message to be signed, it can be computed ahead of time.

 Indeed, a user could precalculate a number of values of to be used to sign documents

as needed. The only other somewhat demanding task is the determination of a

multiplicative inverse, Again, a number of these values can be precalculated.

4.10. ENTITY AUTHENTICATION

4.10.1. BIOMETRICS

4.10.2. PASSWORDS

4.11. CHALLENGE RESPONSE PROTOCOLS

4.12. AUTHENTICATION APPLICATIONS

 Kerberos

o Motivation

o Kerberos Version 4

o Kerberos Version 5

 X.509 Authentication Service

o Certificates

o Authentication Procedures

o X.509 Version 3

4.12.1. KERBEROS

Contents

 Kerberos

o Motivation

o Kerberos Version 4

o Kerberos Version 5

Kerberos

 Kerberos4 is an authentication service developed as part of Project Athena at MIT. The

problem that Kerberos addresses is this:

 Assume an open distributed environment in which users at workstations wish to access

services on servers distributed throughout the network.

In particular, the following three threats exist:

1. A user may gain access to a particular workstation and pretend to be another user

operating from that workstation.

2. A user may alter the network address of a workstation so that the requests sent from

 the altered workstation appear to come from the impersonated workstation.

3. A user may eavesdrop on exchanges and use a replay attack to gain entrance to a

server or to disrupt operations.

 In any of these cases, an unauthorized user may be able to gain access to services and

data that he or she is not authorized to access.

 Rather than building in elaborate authentication protocols at each server, Kerberos

provides a centralized authentication server whose function is to authenticate users to

servers and servers to users.

Motivation

1. Rely on each individual client workstation to assure the identity of its user or users and

rely on each server to enforce a security policy based on user identification (ID).

2. Require that client systems authenticate themselves to servers, but trust the client system

concerning the identity of its user.

3. Require the user to prove his or her identity for each service invoked. Also require that

servers prove their identity to clients.

Kerberos Version 4

 Version 4 of Kerberos makes use of DES, in a rather elaborate protocol, to provide

the authentication service.

 Viewing the protocol as a whole, it is difficult to see the need for the many elements

contained therein.

 Therefore, we adopt a strategy used by Bill Bryant of Project Athena [BRYA88] and

build up to the full protocol by looking first at several hypothetical dialogues.

 Each successive dialogue adds additional complexity to counter security

vulnerabilities revealed in the preceding dialogue.

A Simple Authentication Dialogue

In an unprotected network environment, any client can apply to any server for service. The

obvious security risk is that of impersonation.

 An opponent can pretend to be another client and obtain unauthorized privileges on

server machines.

 To counter this threat, servers must be able to confirm the identities of clients who

request service.

 Each server can be required to undertake this task for each client/server interaction,

but in an open environment, this places a substantial burden on each server.

 An alternative is to use an authentication server (AS) that knows the passwords of all

users and stores these in a centralized database.

 In addition, the AS shares a unique secret key with each server. These keys have been

distributed physically or in some other secure manner.

 Consider the following hypothetical dialogue:

Where

C = client

AS = authentication server

V =server

IDC = identifier of user on C

IDV = identifier of V

PC = password of user on C

ADC = network address of C

Kv = secret encryption key shared by AS and V

A More Secure Authentication Dialogue

 Although the foregoing scenario solves some of the problems of authentication in an

open network environment, problems remain.

Let us look at the details of this scheme:

1.The client requests a ticket-granting ticket on behalf of the user by sending its user's ID and

password to the AS, together with the TGS ID, indicating a request to use the TGS service.

2. The AS responds with a ticket that is encrypted with a key that is derived from the user's

password. When this response arrives at the client, the client prompts the user for his or her

password, generates the key, and attempts to decrypt the incoming message.

 If the correct password is supplied, the ticket is successfully recovered. Because only

the correct user should know the password, only the correct user can recover the

ticket.

 Thus, we have used the password to obtain credentials from Kerberos without having

to transmit the password in plaintext.

 The ticket itself consists of the ID and network address of the user, and the ID of the

TGS. This corresponds to the first scenario.

 3. The client requests a service-granting ticket on behalf of the user. For this purpose, the

client transmits a message to the TGS containing the user's ID, the ID of the desired service,

and the ticket-granting ticket.

 4. The TGS decrypts the incoming ticket and verifies the success of the decryption by the

presence of its ID. It checks to make sure that the lifetime has not expired.

Then it compares the user ID and network address with the incoming information to authenticate

the user.

 If the user is permitted access to the server V, the TGS issues a ticket to grant access

to the requested.

 The service-granting ticket has the same structure as the ticket-granting ticket. Indeed,

because the TGS is a server, we would expect that the same elements are needed to

authenticate a client to the TGS and to authenticate a client to an application server.

 Again, the ticket contains a timestamp and lifetime. If the user wants access to the

same service at a later time, the client can simply use the previously acquired service-

granting ticket and need not bother the user for a password.

 Note that the ticket is encrypted with a secret key (Kv).

The Version 4 Authentication Dialogue:

Although the foregoing scenario enhances security compared to the first attempt, two

additional problems remain.

 The heart of the first problem is the lifetime associated with the ticket-granting ticket.

 If this lifetime is very short (e.g., minutes), then the user will be repeatedly asked for

a password. If the lifetime is long (e.g., hours), then an opponent has a greater

opportunity for replay.

 An opponent could eavesdrop on the network and capture a copy of the ticket-

granting ticket and then wait for the legitimate user to log out.

 Then the opponent could forge the legitimate user's network address and send the

message of step (3) to the TGS.

 This would give the opponent unlimited access to the resources and files available to

the legitimate user.

Summary of Kerberos Version 4 Message Exchanges

Figure 15.2 illustrates the Kerberos exchanges among the parties. Table 15.2 summarizes the

justification for each of the elements in the Kerberos protocol.

Kerberos Realms and Multiple Kerberi

 A full-service Kerberos environment consisting of a Kerberos server, a number of

clients, and a number of application servers requires the following:

1. The Kerberos server must have the user ID and hashed passwords of all

participating

users in its database. All users are registered with the Kerberos server.

2. The Kerberos server must share a secret key with each server. All servers are

registered with the Kerberos server. Such an environment is referred to as a

Kerberos realm.

 The concept of realm can be explained as follows. A Kerberos realm is a set of

managed nodes that share the same Kerberos database.

 Changing or accessing the contents of a Kerberos database requires the Kerberos master

password. A related concept is that of a Kerberos principal, which is a service or user

that is known to the Kerberos system.

 Each Kerberos principal is identified by its principal name. Principal names consist of

three parts: a service or user name, an instance name, and a realm name.

3. The Kerberos server in each interoperating realm shares a secret key with the server

in the other realm. The two Kerberos servers are registered with each other.

 The scheme requires that the Kerberos server in one realm trust the Kerberos server

in the other realm to authenticate its users..

Kerberos Version 5

 Kerberos Version 5 is specified in RFC 1510 and provides a number of improvements

over version 4

Differences between Versions 4 and 5

 Version 5 is intended to address the limitations of version 4 in two areas:

environmental shortcomings and technical deficiencies

 Kerberos Version 4 was developed for use within the Project Athena environment

and, accordingly, did not fully address the need to be of general purpose.

The Version 5 Authentication Dialogue

The following new elements are added:

 Realm: Indicates realm of user

 Options: Used to request that certain flags be set in the returned ticket

 Times: Used by the client to request the following time settings in the ticket:

 Nonce: A random value to be repeated in message (2) to assure that the response is

fresh and has not been replaced by an opponent.

The authenticator includes several new fields as follows:

 Subkey: The client's choice for an encryption key to be used to protect this specific

application session. If this field is omitted, the session key from the ticket (Kc,v) is used.

 Sequence number: An optional field that specifies the starting sequence number to be used

by the server for messages sent to the client during this session. Messages may be sequence

numbered to detect replays.

Ticket Flags: The flags field included in tickets in version 5 supports expanded functionality

compared to that available in version 4.

4.12.2. X.509

Contents

 X.509 Authentication Service

o Certificates

o Authentication Procedures

o X.509 Version 3

X.509 Authentication services:

 X.509 defines a framework for the provision of authentication services by the X.500

directory to its users. Each certificate contains the public key of a user and is signed

with the private key of a trusted certification authority.

 In addition, X.509 defines alternative authentication protocols based on the use of

public-key certificates.

 X.509 is based on the use of public-key cryptography and digital signatures. The

standard does not dictate the use of a specific algorithm but recommends RSA. The

digital signature scheme is assumed to require the use of a hash function.

Figure 14.3. Public-Key Certificate Use

Certificates:

 The heart of the X.509 scheme is the public-key certificate associated with each user.

These user certificates are assumed to be created by some trusted certification authority

(CA) and placed in the directory by the CA or by the user.

 The directory server itself is not responsible for the creation of public keys or for the

certification function; it merely provides an easily accessible location for users to obtain

certificates.

 Figure 14.15a shows the general format of a certificate, which includes the following

elements.

o Version: Differentiates among successive versions of the certificate format;

the default is version 1. If the Issuer Unique Identifier or Subject Unique

Identifier are present, the value must be version 2. If one or more extensions

are present, the version must be version 3.

o Serial number: An integer value, unique within the issuing CA, that is

unambiguously associated with this certificate.

o Signature algorithm identifier: The algorithm used to sign the certificate,

together with any associated parameters. Because this information is repeated

in the Signature field at the end of the certificate, this field has little, if any,

utility.

o Issuer name: X.500 name of the CA that created and signed this certificate.

o Period of validity: Consists of two dates: the first and last on which the

certificate is valid.

o Subject name: The name of the user to whom this certificate refers. That is,

this certificate certifies the public key of the subject who holds the

corresponding private key.

o Subject's public-key information: The public key of the subject, plus an

identifier of the algorithm for which this key is to be used, together with any

associated parameters.

o Issuer unique identifier: An optional bit string field used to identify uniquely

the issuing CA in the event the X.500 name has been reused for different

entities.

o Subject unique identifier: An optional bit string field used to identify

uniquely the subject in the event the X.500 name has been reused for different

entities.

o Extensions: A set of one or more extension fields. Extensions were added in

version 3 and are discussed later in this section.

o Signature: Covers all of the other fields of the certificate; it contains the hash

code of the other fields, encrypted with the CA's private key. This field

includes the signature algorithm identifier.

 The unique identifier fields were added in version 2 to handle the possible reuse of

subject and/or issuer names over time. These fields are rarely used. The standard uses

the following notation to define a certificate:

Where

V = version of the certificate

SN = serial number of the certificate

AI = identifier of the algorithm used to sign the certificate

CA = name of certificate authority

UCA = optional unique identifier of the CA

A = name of user A

UA = optional unique identifier of the user A

Ap = public key of user A

TA = period of validity of the certificate

Obtaining a User's Certificate

 User certificates generated by a CA have the following characteristics:

 Any user with access to the public key of the CA can verify the user public key that

was certified.

 No party other than the certification authority can modify the certificate without this

being detected.

 The CA signs the certificate with its private key. If the corresponding public key is

known to a user, then that user can verify that a certificate signed by the CA is valid.

 Figure 14.16, taken from X.509, is an example of such a hierarchy. The connected

circles indicate the hierarchical relationship among the CAs; the associated boxes

indicate certificates maintained in the directory for each CA entry.

 The directory entry for each CA includes two types of certificates:

• Forward certificates: Certificates of X generated by other CAs

• Reverse certificates: Certificates generated by X that are the certificates of other CAs

 In this example, user A can acquire the following certificates from the directory to

establish a certification path to B:

 When A has obtained these certificates, it can unwrap the certification path in sequence

to recover a trusted copy of B’s public key. Using this public key, A can send encrypted

messages to B. If A wishes to receive encrypted messages back from B, or to sign

messages sent to B, then B will require A’s public key, which can be obtained from the

following certification path:

 B can obtain this set of certificates from the directory, or A can provide them as part of

its initial message to B.

Revocation of Certificates

 Recall from Figure 14.4 that each certificate includes a period of validity, much like

a credit card. Typically, a new certificate is issued just before the expiration of the

old one.

 In addition, it may be desirable on occasion to revoke a certificate before it expires,

for one of the following reasons:

 1. The user's private key is assumed to be compromised.

 2. The user is no longer certified by this CA.

 3. The CA's certificate is assumed to be compromised.

Authentication Procedures

 X.509 also includes three alternative authentication procedures that are intended for use

across a variety of applications.

 All these procedures make use of public-key signatures. It is assumed that the two

parties know each other's public key, either by obtaining each other's certificates from

the directory or because the certificate is included in the initial message from each side.

One-Way Authentication

 One way authentication involves a single transfer of information from one user (A)

to another (B), and establishes the following:

1. The identity of A and that the message was generated by A

2. That the message was intended for B

3. The integrity and originality (it has not been sent multiple times) of

the message. At a minimum, the message includes a timestamp tA, a

nonce rA and the identity of B and is signed with A's private key.

 Figure 14.6. X.509 Strong Authentication Procedures

 The timestamp consists of an optional generation time and an expiration time. This

prevents delayed delivery of messages.

 The nonce can be used to detect replay attacks. The nonce value must be unique within

the expiration time of the message.

 Thus, B can store the nonce until it expires and reject any new messages with the same

nonce.

Two-Way Authentication

 In addition to the three elements just listed, two-way authentication establishes the

following elements:

4. The identity of B and that the reply message was generated by B

5. That the message was intended for A

6. The integrity and originality of the reply

 Two-way authentication thus permits both parties in a communication to verify the

identity of the other.

 The reply message includes the nonce from A, to validate the reply. It also includes a

timestamp and nonce generated by B. As before, the message may include signed

additional information and a session key encrypted with A's public key.

Three-Way Authentication

 In three-way authentication, a final message from A to B is included, which contains

a signed copy of the nonce rB.

 The intent of this design is that timestamps need not be checked: Because both nonces

are echoed back by the other side, each side can check the returned nonce to detect

replay attacks. This approach is needed when synchronized clocks are not available.

X.509 Version 3

 The X.509 version 2 format does not convey all of the information that recent design

and implementation experience has shown to be needed.

Lists the following requirements not satisfied by version 2:

 1. The Subject field is inadequate to convey the identity of a key owner to a public-

key user. X.509 names may be relatively short and lacking in obvious identification

details that may be needed by the user.

2. The Subject field is also inadequate for many applications, which typically

recognize entities by an Internet e-mail address, URL, or some other Internet-related

identification.

3. There is a need to indicate security policy information. This enables a security

application or function, such as IPSec, to relate an X.509 certificate to a given policy.

4. There is a need to limit the damage that can result from a faulty or malicious CA

by setting constraints on the applicability of a particular certificate.

4. It is important to be able to identify different keys used by the same owner at

different times. This feature supports key life cycle management, in particular the

ability to update key pairs for users and CAs on a regular basis or under

exceptional circumstances.

Certificate Subject and Issuer Attributes

 These extensions support alternative names, in alternative formats, for a certificate

subject or certificate issuer and can convey additional information about the

certificate subject, to increase a certificate user's confidence that the certificate subject

is a particular person or entity.

 For example, information such as postal address, position within a corporation, or

picture image may be required.

The extension fields in this area include the following:

 Subject alternative name: Contains one or more alternative names, using any of a

variety of forms. This field is important for supporting certain applications, such as

electronic mail, EDI, and IPSec, which may employ their own name forms.

 Issuer alternative name: Contains one or more alternative names, using any of a

variety of forms.

 Subject directory attributes: Conveys any desired X.500 directory attribute values

for the subject of this certificate.

Certification Path Constraints

 These extensions allow constraint specifications to be included in certificates issued

for CAs by other CAs.

 The constraints may restrict the types of certificates that can be issued by the subject

CA or that may occur subsequently in a certification chain.

The extension fields in this area include the following:

Basic constraints: Indicates if the subject may act as a CA. If so, a certification path

length constraint may be specified.

Name constraints: Indicates a name space within which all subject names in

subsequent certificates in a certification path must be located.

Policy constraints: Specifies constraints that may require explicit certificate policy

identification or inhibit policy mapping for the remainder of the certification path.

UNIT II

SYMMETRIC KEY CRYPTOGRAPHY

MATHEMATICS OF SYMMETRIC KEY CRYPTOGRAPHY: Algebraic structures –

Modular arithmetic-Euclid‟s algorithm- Congruence and matrices – Groups, Rings, Fields-

Finite fields- SYMMETRIC KEY CIPHERS: SDES – Block cipher Principles of DES –

Strength of DES – Differential and linear cryptanalysis – Block cipher design principles –

Block cipher mode of operation – Evaluation criteria for AES – Advanced Encryption Standard

– RC4 – Key distribution.

MATHEMATICS OF SYMMETRIC KEY CRYPTOGRAPHY
2.2. MODULAR ARITHMETIC

Contents

 The Modulus

 Properties of Congruences

 Modular Arithmetic Operations

 Properties of Modular Arithmetic

The Modulus

 If a is an integer and n is a positive integer, we define a mod n to be the remainder when

a is divided by n. The integer n is called the modulus. Thus, for any integer a, we can

rewrite Equation (4.1) as follows:

 Two integers a and b are said to be congruent modulo n, if (a mod n) = (b mod n). This

is written as a K b (mod n).

Properties of Congruences

Congruences have the following properties:

To demonstrate the first point, if n | (a - b), then (a - b) = kn for some k.

 So when b is divided by n) = (b mod n).we can write a = b + kn. Therefore, (a mod n)

= (remainder when b + kn is divided by n) = remainder

The remaining points are as easily proved.

Modular Arithmetic Operations

 Note that, by definition (Figure 4.1), the (mod n) operator maps all integers into the set

of integers {0, 1, c, (n - 1)}. this technique is known as modular arithmetic.

Modular arithmetic exhibits the following properties:

Properties of Modular Arithmetic

Define the set Zn as the set of nonnegative integers less than n:

This is referred to as the set of residues, or residue classes (mod n). To be more precise,

each integer in Zn represents a residue class. We can label the residue classes (mod n) as [0],

[1], [2], c, [n - 1], where

2.4. EUCLID’S ALGORITHM

Contents

 Introduction

 Greatest Common Divisor

 Finding the Greatest Common Divisor

Introduction

 One of the basic techniques of number theory is the Euclidean algorithm, which is a

simple procedure for determining the greatest common divisor of two positive integers.

First, we need a simple definition: Two integers are relatively prime if their only

common positive integer factor is 1.

Greatest Common Divisor:

 Recall that nonzero b is defined to be a divisor of a if a = mb for some m, where a, b,

and m are integers.

 We will use the notation gcd(a, b) to mean the greatest common divisor of a and b.

The greatest common divisor of a andb is the largest integer that divides both a and b.

 We also define gcd(0, 0) = 0.More formally, the positive integer c is said to be the

greatest common divisor of a and b if

1. c is a divisor of a and of b.

2. Any divisor of a and b is a divisor of c.

An equivalent definition is the following:

 Because we require that the greatest common divisor be positive, gcd(a, b) = gcd(a, −b)

= gcd(−a, b) = gcd(−a,−b). In general, gcd(a, b) = gcd(|a| , |b|).

Finding the Greatest Common Divisor

 Suppose we have integers a, b such that d = gcd(a, b). Because gcdgcd(|a| , |b|) = gcd(a,

b), there is no harm in assuming a ≥ b > 0. Now dividing a by b and applying the division

algorithm, we can state:

 Let us now return to Equation (4.2) and assume that r1 ≠ 0. Because b > r1, we can

divide b by r1 and apply the division algorithm to obtain:

The result is the following system of equations:

Let us now look at an example with relatively large numbers to see the power of this algorithm:

In this example, we begin by dividing 1160718174 by 316258250, which gives 3 with a

remainder of 211943424. Next we take 316258250 and divide it by 211943424. The process

continues until we get a remainder of 0, yielding a result of 1078.

2.5. CONGRUENCE AND MATRICES

2.6. GROUPS, RINGS, FIELDS

Groups, rings, and fields are the fundamental elements of a branch of mathematicsknown as

abstract algebra, or modern algebra.

Groups

Contents

 Groups

 A1- Closure

 A2 - Associative

 A3 - Identity

 A4 - Inverse

 A5 - Commutative

 Rings

 M1- Closure under multiplication

 M2 - Associativity of multiplication

 M3 - Distributive law

 M4 – Commutativity of multiplication

 M5 – Multiplicative Identity

 M6 – No zero divisors

 Fields

 M7 – Multiplicative Inverse

 A group G, sometimes denoted by {G, ∙}, is a set of elements with a binary

operationdenoted by ∙ that associates to each ordered pair (a, b) of elements in G an

element(a ∙ b) in G, such that the following axioms are obeyed:

 If a group has a finite number of elements, it is referred to as a finite group, and the

order of the group is equal to the number of elements in the group. Otherwise, the

group is an infinite group.

 A group is said to be abelian if it satisfies the following additional condition:

Rings

 A ring R, sometimes denoted by {R, +, *}, is a set of elements with two binary

operations, called addition and multiplication, such that for all a, b, c in R the following

axioms are obeyed.

 A ring is said to be commutative if it satisfies the following additional condition:

 Next, we define an integral domain, which is a commutative ring that obeys the

following axioms.

Fields:

 A field F, sometimes denoted by {F, +, *}, is a set of elements with two binary

operations, called addition and multiplication, such that for all a, b, c in F the following

axioms are obeyed.

2.7. FINITE FIELDS

SYMMETRIC KEY CIPHERS
2.8. SDES

Contents

 Introduction

 DES Encryption

 DES Decryption

 DES Example

 The Avalanche Effect

 The strength of DES

 The Use of 56-Bit Keys

 The Nature of the DES

Algorithm

 Timing Attacks

Introduction

 Proposed by NIST in 1977.

 It is a block cipher and encrypts 64 bits data using 56 bit key.

DES Encryption:

 There are two inputs to the encryption function: the plaintext to be encrypted and the

key. In this case, the plaintext must be 64 bits in length and key is 56 in length.

 Looking at the left-hand side of the figure, we can see that the processing of the

plaintext proceeds in three phases.

 First, the 64-bit plaintext passes through an initial permutation (IP) that rearranges

the bits to produce the permuted input.

 This is followed by a phase consisting of sixteen rounds of the same function, which

involves both permutation and substitution functions.

 The output of the last (sixteenth) round consists of 64 bits that are a function of the

input plaintext and the key.

 The left and right halves of the output are swapped to produce the pre output.

 Finally, the preoutput is passed through a permutation [IP -1] that is the inverse of the

initial permutation function, to produce the 64-bit ciphertext. With the exception of the

initial and final permutations, DES has the exact structure of a Feistel Cipher.

 The right-hand portion of Figure shows the way in which the 56-bit key is used.

 Initially, the key is passed through a permutation function.

 Then, for each of the sixteen rounds, a subkey (Ki) is produced by the combination of

a left circular shift and a permutation.

 The permutation function is the same for each round, but a different subkey is produced

because of the repeated shifts of the key bits.

DES Decryption

 As with any Feistel cipher, decryption uses the same algorithm as encryption, except

that the application of the subkeys is reversed. Additionally, the initial and final

permutations are reversed.

 Fig .General Depiction of DES Encryption Algorithm

The Avalanche Effect

 A desirable property of any encryption algorithm is that a small change in either the

plaintext or the key should produce a significant change in the cipher text.

 In particular, a change in one bit of the plaintext or one bit of the key should produce a

change in many bits of the cipher text.

 This is referred to as the avalanche effect.

DES Round structure.

 Uses two 32 bit L & R halves.

 As in any classic Feistel cipher, the overall processing at each round can be summarized

in the following formulas:

Li = Ri-1

 Ri= Li 1 { F(Ri 1, Ki)

 The round key is 48 bits. The input is 32 bits.

 This input is first expanded to 48 bits by using a table that defines a permutation plus

an expansion that involves duplication of 16 of the bits.

 The resulting 48 bits are XOR ed with. This 48-bit result passes through a substitution

function that produces a 32-bit output, which is permuted as defined by table.

 The role of the S-boxes in the function F is illustrated in Figure.

 The substitution consists of a set of eight S-boxes, each of which accepts 6 bits as input

and Produces 4 bits as output.

 Fig: Calculation of F(R, K)

2.9. STRENGTH OF DES

 The Use of 56-Bit Keys

 The Nature of the DES Algorithm

 Timing Attacks

2.9. DIFFERENTIAL AND LINEAR CRYPTANALYSIS

2.10. BLOCK CIPHER DESIGN PRINCIPLES

– Block cipher Principles of DES

Contents

 Introduction

 Number of rounds

 Design of function

 Key Schedule Algorithm

Introduction

 There are three critical aspects of block cipher design: the number of rounds, design of

the function F, and key scheduling

Number of Rounds

 The greater the number of rounds, the more difficult it is to perform cryptanalysis, even

for a relatively weak F.

 In general, the criterion should be that the number of rounds is chosen so that known

cryptanalytic efforts require greater effort than a simple brute-force key search attack.

 The differential cryptanalysis attack requires 255.1 operations, whereas brute force

requires 255.

 If DES had 15 or fewer rounds, differential cryptanalysis would require less effort than

a brute-force key search.

 This criterion is attractive, because it makes it easy to judge the strength of an algorithm

and to compare different algorithms.

 In the absence of a cryptanalytic breakthrough, the strength of any algorithm that

satisfies the criterion can be judged solely on key length.

Design of Function F

 The heart of a Feistel block cipher is the function F, which provides the element of

confusion in a Feistel cipher. Thus, it must be difficult to “unscramble” the substitution

performed by F.

 One obvious criterion is that F be nonlinear. The more nonlinear F, the more difficult

any type of cryptanalysis will be.

 The more difficult it is to approximate F by a set of linear equations, the more nonlinear

F is. Several other criteria should be considered in designing F.

 We would like the algorithm to have good avalanche properties.

 A more stringent version of this is the strict avalanche criterion (SAC), which states

that any output bit j of an S-box should change with probability 1/2 when any single

input bit i is inverted for all i, j.

 Although SAC is expressed in terms of S-boxes, a similar criterion could be applied to

F as a whole. This is important when considering designs that do not include S-boxes.

 Another criterion proposed is the bit independence criterion (BIC), which states that

output bits j and k should change independently when any single input bit i is inverted

for all i, j, and k. The SAC and BIC criteria appear to strengthen the effectiveness of

the confusion function.

Key Schedule Algorithm

 With any Feistel block cipher, the key is used to generate one subkey for each round.

 In general, we would like to select subkeys to maximize the difficulty of deducing

individual subkeys and the difficulty of working back to the main key.

 No general principles for this have yet been promulgated.

 At minimum, the key schedule should guarantee key/ciphertext Strict Avalanche

Criterion and Bit Independence Criterion.

2.11. BLOCK CIPHER MODE OF OPERATION

Contents

 Electronic Code Book

 Cipher Block Chaining Mode

 Cipher Feedback Mode

 Output Feedback Mode

 Counter Mode

Electronic Code Book

 The simplest mode is the Electronic codebook (ECB) mode, in which plaintext is

handled one block at a time and each block of plaintext is encrypted using the same key

(Figure 6.3).

 The term codebook is used because, for a given key, there is a unique ciphertext for

every b-bit block of plaintext.

 For a message longer than b bits, the procedure is simply to break the message into b-

bit blocks, padding the last block if necessary.

 Decryption is performed one block at a time, always using the same key.

 We can define ECB mode as follows.

 The ECB method is ideal for a short amount of data, such as an encryption key.

 For lengthy messages, the ECB mode may not be secure. If the message is highly

structured, it may be possible for a cryptanalyst to exploit these regularities.

Cipher Block Chaining Mode

 In this scheme, the input to the encryption algorithm is the XOR of the current plaintext

block and the preceding ciphertext block; the same key is used for each block.

 In effect, we have chained together the processing of the sequence of plaintext blocks.

 The input to the encryption function for each plaintext block bears no fixed relationship

to the plaintext block. Therefore, repeating patterns of b bits are not exposed.

 The result is XORed with the preceding ciphertext block to produce the plaintext block.

To see that this works, we can write

 To produce the first block of ciphertext, an initialization vector (IV) is XORed with the

first block of plaintext. On decryption, the IV is XORed with the output of the

decryption algorithm to recover the first block of plaintext.

 We can define CBC mode as

Cipher Feedback Mode

 As with CBC, the units of plaintext are chained together, so that the cipher text of any

plaintext unit is a function of all the preceding plaintext.

 In this case, rather than blocks of b bits, the plaintext is divided into segments of s bits.

 First, consider encryption. The input to the encryption function is a b-bit shift register

that is initially set to some initialization vector (IV).

 The leftmost (most significant) s bits of the output of the encryption function are

XORed with the first segment of plaintext P1 to produce the first unit of ciphertext C1,

which is then transmitted.

 In addition, the contents of the shift register are shifted left by s bits, and C1 is placed

in the rightmost (least significant) s bits of the shift register.

 This process continues until all plaintext units have been encrypted. For decryption, the

same scheme is used, except that the received ciphertext unit is XORed with the output

of the encryption function to produce the plaintext unit

 This is easily explained. Let MSBs(X) be defined as the most significant s bits of X.

Then

 Output feedback (OFB) mode

 The output feedback (OFB) mode is similar in structure to that of CFB. For OFB, the

output of the encryption function is feed back to become the input for encrypting the

next block of plaintext (Figure 6.6).

 The other difference is that the OFB mode operates on full blocks of plaintext and

ciphertext, whereas CFB operates on an s-bit subset. OFB encryption can be expressed

as

Counter Mode

 Although interest in the counter (CTR) mode has increased recently with applications

to ATM (asynchronous transfer mode) network security and IP sec (IP security),

this mode was proposed early on (e.g., [DIFF79]).

 Figure 6.7 depicts the CTR mode. A counter equal to the plaintext block size is used.

 Typically, the counter is initialized to some value and then incremented by 1 for each

subsequent block (modulo 2b, where b is the block size).

 For encryption, the counter is encrypted and then XORed with the plaintext block to

produce the ciphertext block; there is no chaining.

 For decryption, the same sequence of counter values is used, with each encrypted

counter XORed with a ciphertext block to recover the corresponding plaintext block.

Thus, the initial counter value must be made available for decryption. Given a sequence

of counters T1, T2, c, TN, we can define CTR mode as follows.

2.12. EVALUATION CRITERIA FOR AES

2.13. ADVANCED ENCRYPTION STANDARD

Finite Field Arithmetic

 In AES, all operations are performed on 8-bit bytes. In particular, the arithmetic

operations of addition, multiplication, and division are performed over the finite field.

 In essence, a field is a set in which we can do addition, subtraction, multiplication,

and division without leaving the set.

 Division is defined with the following rule: a/b = a(b-1).

AES Structure

 General Structure

 Detailed Structure

General Structure

 Figure(5.1). shows the overall structure of the AES encryption process.

 The cipher takes a plaintext block size of 128 bits, or 16 bytes.

 The key length can be 16, 24, or 32 bytes (128, 192, or 256 bits). The algorithm is

referred to as AES-128, AES-192, or AES-256, depending on the key length.

 The input to the encryption and decryption algorithms is a single 128-bit block. In FIPS

PUB 197, this block is depicted as a 4 * 4 square matrix of bytes. This block is copied

into the State array, which is modified at each stage of encryption or decryption.

 After the final stage, State is copied to an output matrix.

 This key is then expanded into an array of key schedule words.

 Each word is four bytes, and the total key schedule is 44 words for the 128-bit key

 The cipher consists of N rounds, where the number of rounds depends on the key

length: 10 rounds for a 16-byte key, 12 rounds for a 24-byte key, and 14 rounds for a

32-byte key.

 The first N - 1 rounds consist of four distinct transformation functions: SubBytes,

ShiftRows, MixColumns, and AddRoundKey, which are described subsequently.

 The final round contains only three transformations, and there is a initial single

transformation (AddRoundKey) before the first round, which can be considered

Round 0. Each transformation takes one or more 4 * 4 matrices as input and produces

a 4 * 4 matrix as output.

Fig : AES Encryption Process

Detailed Structure

Figure (5.1) shows the AES cipher in more detail, indicating the sequence of transformations

in each round and showing the corresponding decryption function.

We can make several comments about the overall AES structure.

1. One noteworthy feature of this structure is that it is not a Feistel structure

2. The key that is provided as input is expanded into an array of forty-four 32-bit words,

w[i]. Four

distinct words (128 bits) serve as a round key for each round; these are indicated in

Figure 5.3

3.Four different stages are used, one of permutation and three of substitution:

• Substitute bytes: Uses an S-box to perform a byte-by-byte substitution of the block

• ShiftRows: A simple permutation

• MixColumns: A substitution that makes use of arithmetic over GF(28)

• AddRoundKey: A simple bitwise XOR of the current block with a portion of the expanded

Key.

4. The structure is quite simple.

5. Only the AddRoundKey stage makes use of the key. For this reason, the cipher begins and

ends with an AddRoundKey stage.

6. The AddRoundKey stage is, in effect, a form of Vernam cipher and by itself would not be

formidable. The other three stages together provide confusion, diffusion, and nonlinearity, but

by themselves would provide no security because they do not use the key.

7. Each stage is easily reversible.

8. Once it is established that all four stages are reversible, it is easy to verify that decryption

does recover the plaintext.

9. The final round of both encryption and decryption consists of only three stages.Again, this

is a consequence of the particular structure of AES and is required to make the cipher reversible

Fig (5.3): AES Encryption and Decryption

AES Transformation Functions

The four transformations used in AES. For each stage, we describe the forward (encryption)

algorithm, the inverse (decryption) algorithm, and the rationale for the stage.

 Substitute Bytes Transformation

 Shift Rows Transformation

 Mix Columns Transformation

 AddRoundKey Transformation

Substitute Bytes Transformation

 The forward substitute byte transformation, called SubBytes, is a simple table

lookup. AES defines a 16 * 16 matrix of byte values, called an S-box, that contains a

permutation of all possible 256 8-bit values.

 Each individual byte of State is mapped into a new byte in the following way:

 The leftmost 4 bits of the byte are used as a row value and the rightmost 4 bits are used

as a column value.

 These row and column values serve as indexes into the S-box to select a unique 8-bit

output value.

Shift Rows Transformation

 The first row of State is not altered.

 For the second row, a 1-byte circular left shift is performed.

 For the third row, a 2-byte circular left shift is performed.

 For the fourth row, a 3-byte circular left shift is performed.

 The inverse shift row transformation, called InvShiftRows, performs the circular shifts

in the opposite direction for each of the last three rows, with a 1-byte circular right shift

for the second row, and so on.

MixColumns Transformation

 MixColumns, operates on each column individually.

 Each byte of a column is mapped into a new value that is a function of all four bytes

in that column.

AddRoundKey Transformation

 AddRoundKey, the 128 bits of State are bitwise XORed with the 128 bits of the round

key.

2.14. RC4

Contents

 Characteristics

 RC5 Parameters

 Key Expansion

 Encryption

 Decryption

 RC5 Modes

RC5 is a symmetric encryption algorithm developed by Ron Rivest. RC5 was designed to have

the following characteristics:

 Suitable for hardware or software

 Fast

 Adaptable to processors of different word lengths

 Variable number of rounds:

 Variable-length key

 Simple .

 Low memory requirement

 High security

 RC5 has been incorporated into RSA Data Security, Inc-’s major products, including

BSAFE, JSAFE, and S/MAIL.

RC5 Parameters

RC5 is actually a family of encryption algorithms determined by three parameters, as

follows:

Key Expansion

 RC5 performs a complex set of operations on the secret key to produce a total of t

subkeys. Two subkeys are used in each round, and two subkeys are used on an

additional operation that is not part of any round, so t = 2r + 2. Each subkey is one

Word (w bits) in length.

 Figure 4-11 illustrates the technique used to generate subkeys; The subkeys are stored

in a t-word array labeled S[0], S[1], ….,‘ S[t-1]. Using the parameters r and w as inputs,

this array is initialized to a particular fixed pseudorandom bit pattern.

 Then the b-byte key, K[0…. b - 1], is converted into a c-word array L[0…. c -1]. On a

little endian machine, this is accomplished by zeroing out the array L and copying the

string K directly into the memory positions represented by L.

 If b is not an integer multiple of w, then a portion of L at the right end remains zero-

Finally, a mixing operation is performed that applies the contents of L to the initialized

value of S to produce a final value for the array S.

Let us look at this operations in detail. The initialize operation makes use of two word-length

constants defined as follows,

Where

Encryption:

 RC5 uses three primitive operations (and their inverses):

 Addition: Addition of words, denoted by +, is performed modulo 2w. The inverse

operation, denoted by -, is subtraction modulo 2w.

 Bitwise exclusive-OR: This operation is denoted by

 Left circular rotation: The cyclic rotation of word x left by y bits is denoted by

x <<< y. The inverse is the right circular rotation of word x by y bits, denoted by

x >>> y.

Figure 4-12a depicts the encryption operation. Note that this is not a classic Feistel structure.

The plaintext is assumed to initially reside in the two w-bit registers A and B.

We use the variables LEi and REi to refer to the left and right half of the data after round i has

completed.

Decryption

 Decryption, shown in Figure 4-12b, is easily derived from the encryption algorithm. In

this case, the 2w bits of ciphertext are initially assigned to the two one-word variables

LDr, and RDr.

 We use the variables LDi and RDi to refer to the left and right half of the data before

round i has begun, where the rounds are numbered from r down to 1.

RC5 Modes:

To enhance the effectiveness of RC5 in interoperable implementations, RFC 2040 defines four

different modes of operation:

 RC5 block cipher: This is the raw encryption algorithm that takes a fixed—size

input block (2w bits) and produces a ciphertext block of the same length using a

transformation that depends on a key.

 RCS-CBC: This is the cipher block chaining mode for RC5- CBC. CBC processes

messages whose length is a multiple of the RC5 block size (multiples of 2w bits.

CBC provides enhanced security compared to ECB because repeated blocks of

plaintext produce different blocks of ciphertext.

 RCS-CBC-Pad: This is a CBC style of algorithm that handles plaintext of any

length- The ciphertext will be longer than the plaintext by at most the size of a single

RC5 block.

 RCS-CTS: This is the ciphertext stealing mode, which is also a CBC style of

algorithm- This mode handles plaintext of any length and produces ciphertext of

equal length.

The encryption sequence is as follows:

2.15. KEY DISTRIBUTION

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY

UNIT I

INTRODUCTION
Security trends – Legal, Ethical and Professional Aspects of Security, Need for Security at

Multiple levels, Security Policies – Model of network security – Security attacks, services and

mechanisms – OSI security architecture – Classical encryption techniques: substitution

techniques, transposition techniques, steganography- Foundations of modern cryptography:

perfect security – information theory – product cryptosystem – cryptanalysis.

1.1. SECURITY TRENDS
Internet Architecture Board (IAB) has issued report entitled “Security in the Internet

Architecture” where they have identified key areas for security mechanisms. Among these were

1. need to secure network and 2. need to secure end to end transmission.

These concerns are fully justified. As confirmation, consider the trends reported by the

Computer Emergency Response Team (CERT) Coordination Center (CERT/CC).

Figure 1.1 a shows the trend in Internet-related vulnerabilities reported to CERT over

a 10-year period. These include security weaknesses in the operating systems of attached

computers (e.g., Windows, Linux) as well as vulnerabilities in Internet routers and other

network devices.

 Figure 1.1 b shows the number of security-related incidents reported to CERT. These

include denial of service attacks; IP spoofing, in which intruders create packets with false IP

addresses and exploit applications that use authentication based on IP; and various forms of

eavesdropping and packet sniffing, in which attackers read transmitted information, including

logon information and database contents.

Figure 1.1 a - Trend in Internet-related vulnerabilities reported to CERT

1.1.b - Number of security-related incidents reported to CERT

Over time, the attacks on the Internet and Internet-attached systems have grown more

sophisticated while the amount of skill and knowledge required to mount an attack has declined

(Figure 1.2).

Attacks have become more automated and can cause greater amounts of damage. This

increase in attacks coincides with an increased use of the Internet and with increases in the

complexity of protocols, applications, and the Internet itself. Critical infrastructures

increasingly rely on the Internet for operations. Individual users rely on the security of the

Internet, email, the Web, and Web-based applications to a greater extent than ever. Thus, a

wide range of technologies and tools are needed to counter the growing threat.

At a basic level, cryptographic algorithms for confidentiality and authentication assume

greater importance. As well, designers need to focus on Internet-based protocols and the

vulnerabilities of attached operating systems and applications.

Figure 1.2 - CERT Statistics

1.2. LEGAL, ETHICAL AND PROFESSIONAL ASPECTS OF

SECURITY

1.3. NEED FOR SECURITY AT MULTIPLE LEVELS
Multilevel security or multiple levels of security (MLS) is the application of a computer

system to process information with incompatible classifications (i.e., at different

security levels), permit access by users with different security clearances and needs-to-

know, and prevent users from obtaining access to information for which they lack

authorization. There are two contexts for the use of multilevel security. One is to refer

to a system that is adequate to protect itself from subversion and has robust mechanisms

to separate information domains, that is, trustworthy. Another context is to refer to an

application of a computer that will require the computer to be strong enough to protect

itself from subversion and possess adequate mechanisms to separate information

domains, that is, a system we must trust. This distinction is important because systems

that need to be trusted are not necessarily trustworthy.

1.4. SECURITY POLICIES

1.5. MODEL OF NETWORK SECURITY
 A message is to be transferred from one party to another across some sort of Internet

service.

https://en.wikipedia.org/wiki/Classified_information_in_the_United_States
https://en.wikipedia.org/wiki/Security_clearance
https://en.wikipedia.org/wiki/Need_to_know
https://en.wikipedia.org/wiki/Need_to_know

 A logical information channel is established by defining a route through the Internet

from source to destination and by the cooperative use of communication protocols (e.g.,

TCP/IP) by the two principals.

 Security aspects come into play when it is necessary or desirable to protect the

information transmission from an opponent who may present a threat to confidentiality,

authenticity, and so on. All the techniques for providing security have two components:

 A security-related transformation on the information to be sent.

 Some secret information shared by the two principals and, it is hoped,

unknown to the opponent. A trusted third party may be needed to achieve

secure transmission.

This general model shows that there are four basic tasks in designing a particular security

service:

1. Design an algorithm for performing the security-related transformation. The

algorithm should be such that an opponent cannot defeat its purpose.

2. Generate the secret information to be used with the algorithm.

3. Develop methods for the distribution and sharing of the secret information.

4. Specify a protocol to be used by the two principals that makes use of the security

algorithm and the secret information to achieve a particular security service.

 A general model of these other situations is illustrated in Figure 1.3, which reflects a

concern for protecting an information system from unwanted access.

 The hacker can be someone who, with no malign intent, simply gets satisfaction from

breaking and entering a computer system.

Programs can present two kinds of threats:

Information access threats: Intercept or modify data on behalf of users who should not have

access to that data.

Service threats: Exploit service flaws in computers to inhibit use by legitimate users.

 Viruses and worms are two examples of software attacks. They can also be inserted

into a system across a network.

 The security mechanisms needed to cope with unwanted access fall into two broad

categories (see Figure 1.3).

 The first category might be termed a gatekeeper function. It includes

password-based login procedures and screening logic that is designed to detect

and reject worms, viruses.

 The second line of defense consists of a variety of internal controls that

monitor activity and analyze stored information in an attempt to detect the

presence of unwanted intruders.

1.6. SECURITY ATTACKS

Contents

 Introduction

 Passive Attacks

o the release of message contents and

o traffic analysis.

 Active Attacks

o masquerade,

o replay,

o modification of messages, and

o denial of service.

Introduction

 security attacks, uses both in X.800 and RFC 2828, is in terms of passive attacks and

active attacks.
 A passive attack attempts to learn or make use of information from the system but

does not affect system resources.

 An active attack attempts to alter system resources or affect their operation.

Passive Attacks

 Passive attacks (Figure 1.1) are in the nature of eavesdropping on, or monitoring of,

transmissions.

 The goal of the opponent is to obtain information that is being transmitted.

 Two types of passive attacks are :

 the release of message contents and

 traffic analysis.

 The release of message contents is easily understood. A telephone conversation, an

electronic mail message, and a transferred file may contain sensitive or confidential

information.

 A traffic analysis, is subtler. Suppose that we had a way of masking the contents of

messages or other information traffic so that opponents, even if they captured the

message, could not extract the information from the message.

Active Attacks

 Active attacks (Figure 1.1b) involve some modification of the data stream or the

creation of a false stream and can be subdivided into four categories:

 masquerade,

 replay,

 modification of messages, and

 denial of service.

 A masquerade - A masquerade attack usually includes one of the other forms of active

attack.

 Replay involves the passive capture of a data unit and its subsequent retransmission to

produce an unauthorized effect.

 Modification of messages simply means that some portion of a legitimate message is

altered, or that messages are delayed or reordered, to produce an unauthorized effect.

 The denial of service prevents or inhibits the normal use or management of

communications facilities.

1.7. SECURITY SERVICES

Contents

1. Introduction

2. Authentication

Peer Entity Authentication

Data Origin Authentication

3. Access Control

4. Data Confidentiality

Connection Confidentiality

Connectionless Confidentiality

Selective-Field Confidentiality

Traffic Flow Confidentiality

5. Data Integrity

Connection Integrity with Recovery

Connection Integrity without

Recovery

Selective-Field Connection Integrity

Connectionless Integrity

Selective-Field Connectionless

Integrity

6. Nonrepudiation

Nonrepudiation, Origin

Nonrepudiation, Destination

7. Availability Service

Introduction

 Security services is defined as a processing or communication service that is provided by

a system to give a specific kind of protection to system resources.

 X.800 divides these services into five categories and fourteen specific services.

1. Authentication

 The assurance that the communicating entity is the one that it claims to be.

Two specific authentication services are defined in X.800:

o Peer Entity Authentication

Used in association with a logical connection to provide confidence in the identity of

the entities connected.

o Data Origin Authentication

In a connectionless transfer, provides assurance that the source of received data is as

claimed.

2. Access Control

 The prevention of unauthorized use of a resource.

3. Data Confidentiality:

 The protection of data from unauthorized disclosure.

o Connection Confidentiality

The protection of all user data on a connection.

o Connectionless Confidentiality

The protection of all user data in a single data block

o Selective-Field Confidentiality

 The confidentiality of selected fields within the user data on a connection or in a

 single data block.

o Traffic Flow Confidentiality

 The protection of the information that might be derived from observation of traffic

 flows.

4. Data Integrity:

 The assurance that data received are exactly as sent by an authorized entity (i.e.,contain

no modification, insertion, deletion, or replay).

o Connection Integrity with Recovery

Provides for the integrity of all user data on a connection and detects any modification,

with recovery attempted.

o Connection Integrity without Recovery

As above, but provides only detection without recovery.

o Selective-Field Connection Integrity

Provides for the integrity of selected fields within the user data of a data block

transferred over a connection.

o Connectionless Integrity

Provides for the integrity of a single connectionless data block.

o Selective-Field Connectionless Integrity

Provides for the integrity of selected fields within a single connectionless data block;

5. Nonrepudiation

 Provides protection against denial by one of the entities involved in a communication

of having participated in all or part of the communication.

o Nonrepudiation, Origin

Proof that the message was sent by the specified party.

o Nonrepudiation, Destination

Proof that the message was received by the specified party.

1.8. SECURITY MECHANISMS

Contents

 Introduction

 Encipherment

 Digital Signature

 Access Control

 Data Integrity

 Authentication Exchange

 Traffic Padding

 Routing Control

 Notarization

 Pervasive Security Mechanisms

 Trusted Functionality

 Security Label

 Event Detection

 Security Audit Trail

Introduction

 The mechanisms are divided into those that are implemented in a specific protocol

layer, such as TCP or an application-layer protocol, and those that are not specific to

any particular protocol layer or security service.

Encipherment

 The use of mathematical algorithms to transform data into a form that is not readily

intelligible.

Digital Signature

 Data appended to, or a cryptographic transformation of, a data unit that allows a

recipient of the data unit to prove the source and integrity of the data unit and protect

against forgery (e.g., by the recipient).

Access Control

 A variety of mechanisms that enforce access rights to resources.

Data Integrity

 A variety of mechanisms used to assure the integrity of a data unit or stream of data

units.

Authentication Exchange

 A mechanism intended to ensure the identity of an entity by means of information

exchange.

Traffic Padding

 The insertion of bits into gaps in a data stream to frustrate traffic analysis attempts.

Routing Control

 Enables selection of particular physically secure routes for certain data and allows

routing changes, especially when a breach of security is suspected.

Notarization

 The use of a trusted third party to assure certain properties of a data exchange.

Pervasive Security Mechanisms

 Mechanisms those are not specific to any particular OSI security service or protocol

layer.

Trusted Functionality

 That which is perceived to be correct with respect to some criteria (e.g., as established

by a security policy).

Security Label

 The marking bound to a resource (which may be a data unit) that names or designates

the security attributes of that resource.

Event Detection

 Detection of security-relevant events.

Security Audit Trail

 Data collected and potentially used to facilitate a security audit, which is an independent

review and examination of system records and activities.

 A reversible encipherment mechanism is simply an encryption algorithm that allows

data to be encrypted and subsequently decrypted.

 Irreversible encipherment mechanisms include hash algorithms and message

authentication codes, which are used in digital signature and message authentication

applications.

1.9. OSI SECURITY ARCHITECTURE
To assess effectively the security needs of an organization and to evaluate and choose

various security products and policies, the manager responsible for security needs some

systematic way of defining the requirements for security and characterizing the approaches to

satisfying those requirements. This is difficult enough in a centralized data processing

environment; with the use of local and wide area networks, the problems are compounded.

ITU-T3 Recommendation X.800, Security Architecture for OSI, defines such a

systematic approach.4 The OSI security architecture is useful to managers as a way of

organizing the task of providing security. Furthermore, because this architecture was developed

as an international standard, computer and communications vendors have developed security

features for their products and services that relate to this structured definition of services and

mechanisms.

For our purposes, the OSI security architecture provides a useful, if abstract, overview of many

of the concepts that this book deals with. The OSI security architecture focuses on security

attacks, mechanisms, and services. These can be defined briefly as

■ Security attack:

Any action that compromises the security of information owned by an organization.

■ Security mechanism:

 A process (or a device incorporating such a process) that is designed to detect, prevent,

or recover from a security attack.

■ Security service:

A processing or communication service that enhances the security of the

data processing systems and the information transfers of an organization. The services are

intended to counter security attacks, and they make use of one or more security mechanisms to

provide the service.

1.10. CLASSICAL ENCRYPTION TECHNIQUES
Symmetric encryption, also referred to as conventional encryption or single-key

encryption, was the only type of encryption in use prior to the development of public key

encryption in the 1970s. It remains by far the most widely used of the two types of encryption.

Terminologies:
 An original message is known as the plaintext, while the coded message is called the

ciphertext.

 The process of converting from plaintext to ciphertext is known as enciphering or

encryption;

 Restoring the plaintext from the ciphertext is deciphering or decryption.

 The many schemes used for encryption constitute the area of study known as

cryptography. Such a scheme is known as a cryptographic system or a cipher.

 Techniques used for deciphering a message without any knowledge of the enciphering

details fall into the area of cryptanalysis.

 Cryptanalysis is what the layperson calls “breaking the code.”

 The areas of cryptography and cryptanalysis together are called cryptology.

1.10.1. SUBSTITUTION TECHNIQUES

Contents

 Introduction

 Caesar Cipher

 Monoalphabetic Ciphers

 Playfair Cipher

 Hill Cipher

 Polyalphabetic Ciphers

 One-Time Pad

Introduction

 The two basic building blocks of all encryption techniques are substitution and

transposition.

 A substitution technique is one in which the letters of plaintext are replaced by other

letters or by numbers or symbols.

Caesar Cipher

 The Caesar cipher involves replacing each letter of the alphabet with the letter standing

three places further down the alphabet. For example,

 The algorithm can be expressed as follows.

 The decryption algorithm is simply

 If it is known that a given ciphertext is a Caesar cipher, then a brute-force cryptanalysis

is easily performed: simply try all the 25 possible keys.

MonoalphabeticCiphers

 With only 25 possible keys, the Caesar cipher is far from secure.

 Before proceeding, we define the term permutation. A permutation of a finite set of

elements S is an ordered sequence of all the elements of S, with each element appearing

exactly once.

 For example, if S = {a, b, c}, there are six permutations of S:

abc, acb, bac, bca, cab, cba

 If, instead, the “cipher” line can be any permutation of the 26 alphabetic characters,

then there are 26! or greater than 4 * 1026 possible keys.

Playfair Cipher

 The best-known multiple-letter encryption cipher is the Playfair.

 The Playfair algorithm is based on the use of a 5 * 5 matrix of letters constructed using

a keyword. Here is an example,

 In this case, the keyword is monarchy.

 The matrix is constructed by filling in the letters of the keyword (minus duplicates)

from left to right and from top to bottom, and then filling in the remainder of the matrix

with the remaining letters in alphabetic order. The letters I and J count as one letter.

 The rules to be followed are:

 Repeating plaintext letters that come in the same pair are separated with a filer

letter, such as x.

 Plaintext letters that fall in the same row are replaced by the letter to the right,

with the first element of the row circularly following the first.

 Plaintext letters that fall in the same column are replaced by the letter

beneath, with the top element circularly following the last.

 Otherwise each letter is replaced by the letter that lies in its own row and the

column occupied by the other plaintext.

Hill Cipher

 The Hill Algorithm This encryption algorithm takes m successive plaintext letters and

substitutes for them m ciphertext letters.

Polyalphabetic Ciphers

 Another way to improve on the simple monoalphabetic technique is to use different

monoalphabetic substitutions as one proceeds through the plaintext message.

 The general name for this approach is polyalphabetic substitution cipher.

 A general equation of the encryption process is

 Similarly, decryption is

 To encrypt a message, a key is needed that is as long as the message.

 For example, if the keyword is deceptive, the message “we are discovered save

yourself” is encrypted as

Vignere cipher

 Simplest polyalphabetic substitution cipher is the Vigenère Cipher.

• effectively multiple caesar ciphers

• key is multiple letters long K = k1 k2 ... kd

• ith letter specifies ith alphabet to use

• use each alphabet in turn

• repeat from start after d letters in message

• decryption simply works in reverse

Example:

• write the plaintext out

• write the keyword repeated above it

• use each key letter as a caesar cipher key

• encrypt the corresponding plaintext letter

• eg using keyword deceptive

key: deceptivedeceptivedeceptive

plaintext: wearediscoveredsaveyourself

ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Security:

• have multiple ciphertext letters for each plaintext letter

• hence letter frequencies are obscured

• but not totally lost

• start with letter frequencies

– see if look monoalphabetic or not

• if not, then need to determine the ‘number of alphabets’ in the key string (aka. the

period of the key), since then can attach each

Kasisky Method:

• method developed by Babbage / Kasiski

• repetitions in ciphertext give clues to period

• so find same plaintext an exact period apart

• which results in the same ciphertext

• e.g., repeated “VTW” in previous example

• suggests size of 3 or 9

• then attack each monoalphabetic cipher individually using same techniques as before

Autokey cipher

• ideally want a key as long as the message

• Vigenère proposed the autokey cipher

• with keyword is prefixed to message as key

• knowing keyword can recover the first few letters

• use these in turn on the rest of the message

• but still have frequency characteristics to attack

• e.g., given key ‘deceptive’

key: deceptivewearediscoveredsav

plaintext: wearediscoveredsaveyourself

ciphertext:ZICVTWQNGKZEIIGASXSTSLVVWLA

One-Time Pad

 using a random key that is as long as the message, so that the key need not be repeated.

 In addition, the key is to be used to encrypt and decrypt a single message, and then is

discarded.

 Each new message requires a new key of the same length as the new message. Such a

scheme, known as a one-time pad, is unbreakable.

1.10.2. TRANSPOSITION TECHNIQUES
 A very different kind of mapping is achieved by performing some sort of permutation

on the plaintext letters. This technique is referred to as a transposition cipher.

 The simplest such cipher is the rail fence technique, in which the plaintext is written

down as a sequence of diagonals and then read off as a sequence of rows.

 For example, to encipher the message “meet me after the toga party” with a rail fence

of depth 2, we write the following:

1.10.3. STEGANOGRAPHY

Contents

 Techniques
 Character marking

 Invisible ink
 Pin punctures

 Typewriter correction ribbon

Techniques

 The methods of steganography conceal the existence of the message.

 For example, the sequence of first letters of each word of the overall message spells

out the hidden message.

 Various other techniques have been used historically; some examples are the

following:

• Character marking: Selected letters of printed or typewritten text are overwritten in

pencil. The marks are ordinarily not visible unless the paper is held at an angle to bright

light.

• Invisible ink: A number of substances can be used for writing but leave no visible

trace until heat or some chemical is applied to the paper.

• Pin punctures: Small pin punctures on selected letters are ordinarily not visible

unless the paper is held up in front of a light.

• Typewriter correction ribbon: Used between lines typed with a black ribbon, the

results of typing with the correction tape are visible only under a strong light.

Advantages:

 The advantage of steganography is that it can be employed by parties who have

something to lose should the fact of their secret communication (not necessarily the

content) be discovered.

 Encryption flags traffic as important or secret or may identify the sender or receiver as

someone with something to hide. Steganography has a number of drawbacks when

compared to encryption.

 It requires a lot of overhead to hide a relatively few bits of information, although using

a scheme like that proposed in the preceding paragraph may make it more effective.

1.11. FOUNDATIONS OF MODERN CRYPTOGRAPHY
Modern cryptography is the cornerstone of computer and communications security.
Its foundation is based on various concepts of mathematics such as number
theory, computational-complexity theory, and probability theory.

Characteristics of Modern Cryptography

There are three major characteristics that separate modern cryptography from the
classical approach.

Classic Cryptography Modern
Cryptography

It manipulates traditional characters, i.e., letters and digits directly. It operates on
binary bit
sequences.

It is mainly based on ‘security through obscurity’. The techniques employed for coding were
kept secret and only the parties involved in communication knew about them.

It relies on
publicly known
mathematical
algorithms for
coding the
information.
Secrecy is
obtained
through a
secrete key
which is used
as the seed for
the algorithms.
The
computational
difficulty of
algorithms,
absence of
secret key,
etc., make it
impossible for
an attacker to
obtain the
original
information

even if he
knows the
algorithm used
for coding.

It requires the entire cryptosystem for communicating confidentially. Modern
cryptography
requires
parties
interested in
secure
communication
to possess the
secret key
only.

Context of Cryptography

Cryptology, the study of cryptosystems, can be subdivided into two branches −

 Cryptography

 Cryptanalysis

What is Cryptography?

Cryptography is the art and science of making a cryptosystem that is capable of
providing information security.

Cryptography deals with the actual securing of digital data. It refers to the design of
mechanisms based on mathematical algorithms that provide fundamental information
security services. You can think of cryptography as the establishment of a large toolkit
containing different techniques in security applications.

What is Cryptanalysis?

The art and science of breaking the cipher text is known as cryptanalysis.

Cryptanalysis is the sister branch of cryptography and they both co-exist. The
cryptographic process results in the cipher text for transmission or storage. It involves
the study of cryptographic mechanism with the intention to break them. Cryptanalysis
is also used during the design of the new cryptographic techniques to test their
security strengths.

Note − Cryptography concerns with the design of cryptosystems, while cryptanalysis
studies the breaking of cryptosystems.

1.11.1. PERFECT SECURITY

1.11.2. INFORMATION THEORY

1.11.3. PRODUCT CRYPTOSYSTEM
Another innovation introduced by Shannon in his 1949 paper was the idea of combining

cryptosystems by forming their “product.” In cryptography, a product cipher combines two or

more transformations in a manner intending that the resulting cipher is more secure than the

individual components to make it resistant to cryptanalysis. The product cipher combines a

sequence of simple transformations such as substitution (S-box), permutation (P-box),

and modular arithmetic. The concept of product ciphers is due to Claude Shannon.

This idea has been of fundamental importance in the design of present-day cryptosystems such

as the Data Encryption Standard,

For simplicity, we will confine our attention in this section to cryptosystems in

which : cryptosystems of this type are called endomorphic.

Suppose and are two endomorphic

cryptosystems which have the same plaintext (and ciphertext) spaces. Then the product

of S1 and S2, denoted by S1 × S2, is defined to be the cryptosystem

A key of the product cryptosystem has the form K = (K1, K2),

where and . The encryption and decryption rules of the product

cryptosystem are defined as follows: For each K = (K1, K2), we have an encryption

rule eK defined by the formula

and a decryption rule defined by the formula

That is, we first encrypt x with , and then “re-encrypt” the resulting ciphertext

with . Decrypting is similar, but it must be done in the reverse order:

Recall also that cryptosystems have probability distributions associated with their keyspaces.

Thus we need to define the probability distribution for the keyspace of the product

cryptosystem. We do this in a very natural way:

1.11.4. CRYPTANALYSIS

https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Cryptanalysis
https://en.wikipedia.org/wiki/Substitution_cipher
https://en.wikipedia.org/wiki/Transposition_cipher
https://en.wikipedia.org/wiki/Modular_arithmetic
https://en.wikipedia.org/wiki/Claude_Shannon

